Skip to main content
Log in

Deep centers in gallium arsenide associated with intrinsic structural defects

  • Published:
Soviet Physics Journal Aims and scope

Conclusion

  1. 1.

    With some exceptions, deep centers introducible in GaAs by electron irradiation, by thermal treatment, as well as during growth differ in their nature. This means that they probably have different structure. Thus, electron irradiation introduces pure simple defeets, while thermal treatment leads to the formation of complexes of intrinsic defects with doping or residual impurities. The only exceptions are some traps in the first place EL2 which is present in irradiated specimens too, can be introduced during growth, and also by plastic deformation. Such centers are of great interest since they are most likely associated with intrinsic structural defects.

  2. 2.

    In spite of the fact that the results of thermal annealings can not be brought into a single model, the investigation of thermal-treatment defects and their diffusion characteristics is an important practical task, since these defects frequently serve as radiationless recombination centers, impair the thermal stability of high-resistivity material, and, consequently affect the quality of devices.

  3. 3.

    Apparently, one should pay special attention to antistructural defects in GaAs. It is usually customary to interprete the experimental data taking into account solely vacancies and interstitial atoms, on the assumption that antistructural defects are not dominant. Recent experimental data convincingly show that antistructural defects may exist in sufficently large (∼1016 cm−3) concentrations in GaAs, and, owing to the large capture cross section for electrons, their role in electric processes may probe to be very significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. D. V. Lang, J. Appl. Phys.,45, 3023 (1974).

    Google Scholar 

  2. A. F. Kravchenko and V. Ya. Prints, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 1, 52 (1980).

    Google Scholar 

  3. A. Mittoneau, G. M. Martin, and A. Mircea, Electron. Lett.,13, 666 (1977).

    Google Scholar 

  4. G. M. Martin, A. Mittoneau, and A. Mircea, Electron. Lett.,13, 191 (1977).

    Google Scholar 

  5. K. Thommen, Radiat. Eff.,2, 201 (1970).

    Google Scholar 

  6. E. Yu. Brailovskii and I. D. Konozenko, Fiz. Tekh. Poluprovodn.,5, 641 (1971).

    Google Scholar 

  7. Point Defects in Solids, Solid State Physics News, Vol. 9 [in Russian], Mir, Moscow (1979), p. 197.

  8. D. V. Lang, L. C. Kimerling, and S. Y. Leung, J. Appl. Phys.,47, 3587 (1976).

    Google Scholar 

  9. Radiation Effects in Semiconductors, 1976, Proceedings of International and Conference Institute of Physics, Bristol-London (1977).

  10. T. I. Kol'chenko and V. M. Lomako, Fiz. Tekh. Poluprovodn.,9, 1757 (1957).

    Google Scholar 

  11. D. Pons, P. M. Mooney, and J. C. Bourgoin, J. Appl. Phys.,51, 2038 (1980).

    Google Scholar 

  12. D. V. Lang, R. A. Lqgan, and L. C. Kimerling, Phys. Rev.,B15, 4874 (1977).

    Google Scholar 

  13. Point Defects in Solids. Solid State Physics News, Vol. 9 [in Russian], Mir, Moscow (1979), p. 208.

  14. A. F. Kravchenko and V. Ya. Prints, Fiz. Tekh. Poluprovodn.,12, 1612 (1978).

    Google Scholar 

  15. R. H. Wallis, A. Zylbersztejn, and J. M. Besson, Appl. Phys. Lett.,38, 698 (1981).

    Google Scholar 

  16. D. Pons, A. Mircea, and J. Bourgoin, J. Appl. Phys.,51, 4150 (1980).

    Google Scholar 

  17. R. Worner, U. Kaufman, and J. Schneider, Appl. Phys. Lett.,40, 141 (1982).

    Google Scholar 

  18. R. J. Wagner, J. J. Krebs, G. H. Stauss, and A. M. White, Solid State Commun.,36, 15 (1980).

    Google Scholar 

  19. V. N. Brudnyi, D. L. Budnitskii, M. A. Krivov, and V. P. Redko, Phys. Status Solidi (a)27, K 95 (1975).

    Google Scholar 

  20. B. Monemar and J. M. Blum, J. Appl. Phys.,48, 1529 (1977).

    Google Scholar 

  21. R. Coates and E. W. J. Mitchell, Adv. Phys.,24, 593 (1975).

    Google Scholar 

  22. W. E. Spicer, I. Lindau, P. Skeath, C. Y. Su, and P. Chye, Phys. Rev. Lett.,44, 420 (1980).

    Google Scholar 

  23. S. Subramanian, S. Guha, and B. M. Arora, Solid State Electron.,20, 799 (1977).

    Google Scholar 

  24. D. V. Lang and R. A. Logan, J. Electron. Mater.,4, 1053 (1975).

    Google Scholar 

  25. A. Mircea and A. Mittoneau, Appl. Phys.,8, 15 (1975).

    Google Scholar 

  26. J. Matsumoto, P. K. Bhattacharya, and M. J. Ludowise, Appl. Phys. Lett.,41, 662 (1982).

    Google Scholar 

  27. G. M. Martin, J. P. Farges, G. Jacob, J. P. Hallais, and G. Poiblaud, J. Appl. Phys.,51, 2840 (1980).

    Google Scholar 

  28. A. Mircea-Roussel and S. Makaram-Ebeid, Appl. Phys. Lett.,38, 1007 (1981).

    Google Scholar 

  29. D. Pons and S. Makram-Ebeid, J. Phys.,40, 1161 (1979).

    Google Scholar 

  30. G. M. Martin, Appl. Phys. Lett.,39, 747 (1981).

    Google Scholar 

  31. D. Bois and A. Chantre, Rev. Phys. Appl.,F15, 631 (1980).

    Google Scholar 

  32. E. J. Johnson, J. Kafalas, R. W. Davies, and W. A. Dyes, Appl. Phys. Lett.,40, 993 (1982).

    Google Scholar 

  33. A. M. Huber, N. T. Linh, M. Valladon, J. L. Debrun, G. M. Martin, A. Mittoneau, and A. Mircea, J. Appl. Phys.,50, 4022 (1979).

    Google Scholar 

  34. G. M. Martin, P. Terriac, S. Makram-Ebeid, G. Guillot, and M. Gavand, Appl. Phys. Lett.,42, 61 (1983).

    Google Scholar 

  35. S. Makram-Ebeid, D. Gaulard, P. Devillard, and G. M. Martin, Appl. Phys. Lett.,40, 161 (1982).

    Google Scholar 

  36. J. Lagovski, M. G. Gatos, J. M. Parsey, K. Wada, M. Kaminska, and W. Walukiewics, Appl. Phys. Lett.,40, 342 (1982).

    Google Scholar 

  37. G. Vincent, D. Bois, and A. Chantre, J. Appl. Phys.,53, 3643 (1982).

    Google Scholar 

  38. A. Humbert, L. Molland, and D. Bois, J. Appl. Phys.,47, 4137 (1976).

    Google Scholar 

  39. J. A. Van Vechten, J. Chem. Soc.,122, 423 (1975).

    Google Scholar 

  40. Yu. Phil Won, W. C. Mitchell, M. G. Mier, S. S. Li, and W. L. Wang, Appl. Phys. Lett.,41, 532 (1982).

    Google Scholar 

  41. T. Ishida, K. Maeda, and S. Takeuchi, Appl. Phys.,21, 257 (1980).

    Google Scholar 

  42. E. R. Weber, H. Ennen, V. Kaufmenn, J. Windscheif, T. Schneider, and T. Wosinsky, J. Appl. Phys.,53, 6140 (1982).

    Google Scholar 

  43. M. G. Mil'vidskii, V. B. Osvenskii, G. P. Proshko, and L. P. Kholodyni, Fiz. Tekh. Poluprovodn.,6, 224 (1972).

    Google Scholar 

  44. N. A. Anastas'eva, V. T. Bublik, V. B. Ovvenskii, et al., Kristallografiya,23, 314 (1978).

    Google Scholar 

  45. L. M. Morgulis, M. G. Mil'vidskii, and V. B. Osvenskii, Izv. Akad. Nauk SSSR, Ser. Fiz.,38, 1447 (1974).

    Google Scholar 

  46. H. R. Peits and G. L. Pearson, J. Appl. Phys.,37, 2008 (1966).

    Google Scholar 

  47. J. Blanc and R. H. Bube, J. Phys. Chem. Solids,25, 225 (1964).

    Google Scholar 

  48. J. Nishizawa, H. Otsuka, S. Yamakoshi, and K. Ishida, Jpn. J. Appl. Phys.,13, 46 (1974).

    Google Scholar 

  49. J. R. Arthur, J. Phys. Chem. Solids,28, 2257 (1967).

    Google Scholar 

  50. Y. Chiang and G. L. Pearson, J. Appl. Phys.,46, 2986 (1975).

    Google Scholar 

  51. R. D. Pairman, IEEE Trans. Electron. Dev.,ED-28, 135 (1981).

    Google Scholar 

  52. P. Asbeck, IEEE Trans. Electron. Dev.,ED-20, 1853 (1979).

    Google Scholar 

  53. J. Oshawa, K. Ikeda, K. Takashi, and W. Susaki, Jpn. J. Appl. Phys.,21, L49 (1982).

    Google Scholar 

  54. W. Y. Lum and H. H. Weider, Appl. Phys. Lett.,31, 213 (1977).

    Google Scholar 

  55. L. B. Ta, H. M. Hobgood, A. Rohatgi, and R. N. Thomas, J. Appl. Phys.,53, 5771 (1982).

    Google Scholar 

  56. E. A. Skoryatina and M. N. Kolotov, Fiz. Tekh. Poluprovodn.,16, 2076 (1982).

    Google Scholar 

  57. M. N. Kolotov and E. A. Skoryatina, Proceedings of the All-Union Conference on the Physical Principles of Reliability and Degradation of Semiconductor Devices [in Russian], Kishinev (1982), p. 90.

  58. E. A. Skoryatina, Proceedings of the Fifth All-Union Meeting on the Investigation of Gallium Arsenide [in Russian], Tomsk (1982), p. 31.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 10, pp. 56–66, October, 1983.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boltaks, B.I., Kolotov, M.N. & Skoryatina, E.A. Deep centers in gallium arsenide associated with intrinsic structural defects. Soviet Physics Journal 26, 919–927 (1983). https://doi.org/10.1007/BF00896646

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00896646

Keywords

Navigation