Soviet Applied Mechanics

, Volume 27, Issue 4, pp 418–428 | Cite as

Control of the dynamic behavior of two-member systems with flutter

  • L. G. Lobas
  • Yu. L. Vashchenko
Article
  • 17 Downloads

Keywords

Dynamic Behavior 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    V. G. Verbitskii and L. G. Lobas, “Regions of attraction in the problem of the plane motion of systems with flutter,” Prikl. Mat. Mekh.,48, No. 3, 498–503 (1984).Google Scholar
  2. 2.
    V. G. Verbitskii and L. G. Lobas, “Bifurcation and stability of steady motions of wheeled vehicles,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 1, 57–63 (1988).Google Scholar
  3. 3.
    L. G. Lobas, “Free vibrations of a wheel on the self-adjusting column of the chassis with nonlinear damper,” Prikl. Mat. Mekh.,45, No. 4, 756–759 (1981).Google Scholar
  4. 4.
    L. G. Lobas, “Mathematical model of coupled systems with flutter,” Prikl. Mekh.,20, No. 6, 80–87 (1984).Google Scholar
  5. 5.
    L. G. Lobas, “Course stability of two-member wheeled vehicles,” Prikl. Mekh.,25, No. 4, 104–111 (1989).Google Scholar
  6. 6.
    L. G. Lobas and Lyudm. G. Lobas, “Effect of the elasticity of rotating wheels on the path of a two-member road strain,” Prikl. Mekh.,22, No. 1, 81–86 (1986).Google Scholar
  7. 7.
    D. R. Merkin, Introduction to the Theory of Stability of Motion [in Russian], Nauka, Moscow (1971).Google Scholar
  8. 8.
    Y. Rocard, Dynamic Instability: Automobiles, Aircraft, Suspension Bridges, Ungar, New York (1958).Google Scholar
  9. 9.
    R. Scheidl, H. Troger, and K. Zeman, “Coupled flutter and divergence bifurcation of a double pendulum,” Int. J. Nonlinear Mech.,19, No. 2, 163–176 (1984).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • L. G. Lobas
  • Yu. L. Vashchenko

There are no affiliations available

Personalised recommendations