Soviet Physics Journal

, Volume 23, Issue 12, pp 1026–1029 | Cite as

Ferromagnetic resonance in media with an inhomogeneous saturation magnetization

  • V. A. Zhuravlev
  • V. S. Korogodov
  • Yu. N. Kotyukov
  • N. B. Lysova


The method of transition probabilities is used to calculate the line width of ferromagnetic resonance in a medium with an inhomogeneous saturation magnetization. It is shown that in addition to linear (with respect to the Fourier components of the function describing inhomogeneities) terms, the perturbation Hamiltonian must include also quadratic terms. The frequency dependence of the contribution of the porosity to ΔH is fundamentally different from the frequency dependence of the magnetic anisotropy contribution. This anisotropy contribution ΔHa(ω) decreases on increase in the frequency and has a maximum at ω = (2/3)ωM, whereas the porosity contribution ΔHpω increases on increase in the frequency and vanishes at ω = (2/3)ωM.


Porosity Fourier Anisotropy Line Width Frequency Dependence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    A. G. Gurevich, Magnetic Resonance in Ferrites and Antiferromagnets [in Russian], Nauka, Moscow (1973).Google Scholar
  2. 2.
    M. Sparks, Ferromagnetic Relaxation Theory, McGraw-Hill, New York (1964).Google Scholar
  3. 3.
    P. E. Seiden and I. G. Grunberg, J. Appl. Phys.,34, 1696 (1963).Google Scholar
  4. 4.
    P. E. Seiden and M. Sparks, Phys. Rev.,137, A1278 (1965).Google Scholar
  5. 5.
    C. R. Buffler, J. Appl. Phys. Suppl.,30, 172 (1959).Google Scholar
  6. 6.
    A. A. Manuilova and A. G. Gurevich, Fiz. Tverd. Tele (Leningrad),6, 3475 (1964).Google Scholar
  7. 7.
    E. Schlömann, J. Phys. Chem. Solids,6, 242 (1958).Google Scholar
  8. 8.
    E. Schlömann, J. Appl. Phys.,38, 5027 (1967).Google Scholar
  9. 9.
    E. Schlömann, J. Appl. Phys.,38, 5035 (1967).Google Scholar
  10. 10.
    V. A. Zhuravlev, G. I. Ryabtsev, and Yu. N. Kotyukov, Izv. Vyssh. Uchebn. Zaved. Fiz., No. 8, 32 (1979).Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • V. A. Zhuravlev
    • 1
  • V. S. Korogodov
    • 1
  • Yu. N. Kotyukov
    • 1
  • N. B. Lysova
    • 1
  1. 1.V. D. Kuznetsov Siberian Physicotechnical Scientific-Research Institute at the State UniversityTomsk

Personalised recommendations