Soviet Physics Journal

, Volume 27, Issue 1, pp 11–14 | Cite as

Strong gravitational fields and geometry in the large

  • M. E. Gertsenshtein
  • M. Yu. Konstantinov
Physics of Elementary Particles and Field Theory


The problem of strong gravitational fields (μ∼1) can be neither formulated invariantly nor solved in a local manner; it belongs to geometry in the large and requires the discussion of a complete atlas of maps. At μ∼1 a complicated topology of space-time is possible. Requirements for a solution with a complete atlas of maps and a physical example, a rigorous discussion of which has led to new results, are discussed.


Gravitational Field Local Manner Strong Gravitational Field Complicated Topology Complete Atlas 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    W. Pauli, Relativity Theory [Russian translation], GITTL, Moscow (1947).Google Scholar
  2. 2.
    L. D. Landau and E. M. Lifshits, The Classical Theory of Fields, Pergamon (1976).Google Scholar
  3. 3.
    V. A. Fock, Theory of Space, Time, and Gravitation, Pergamon (1964).Google Scholar
  4. 4.
    V. L. Ginzburg, Usp. Fiz. Nauk,128, No. 3, 435 (1979).Google Scholar
  5. 5.
    Ya. B. Zel'dovich and I. D. Novikov, Relativistic Astrophysics, Vol. 1, Stars and Relativity, Univ. of Chicago Press (1971).Google Scholar
  6. 6.
    M. M. Postnikov, Introduction to the Morse Theory [in Russian], Nauka, Moscow (1971).Google Scholar
  7. 7.
    R. L. Bishop and R. J. Crittenden, Geometry of Manifolds, Academic Press (1964).Google Scholar
  8. 8.
    M. E. Gertsenshtein and M. Yu. Konstantinov, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 10 (1976).Google Scholar
  9. 9.
    S. Hawking and G. Ellis, The Large Scale Structure of Space-Time, Cambridge University Press (1973).Google Scholar
  10. 10.
    D. Kramer, H. Stefani, E. Hurlst, and E. McCollum, Exact Solutions of Einstein's Equations [Russian translation], É. Smuttser (ed.), Énergoizdat, Moscow (1982).Google Scholar
  11. 11.
    J. Synge, Nature,164, 148 (1949).Google Scholar
  12. 12.
    M. E. Gertsenshtein, Zh. Eksp. Teor. Fiz.,51, 129, 1127 (1966): Izv. Vyssh. Uchebn. Zaved., Fiz., No. 6, 127 (1977); No. 7, 90 (1977).Google Scholar
  13. 13.
    M. E. Gertsenshtein and M. Yu. Konstantinov, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 10 (1977); Problemy Teorii Gravitatsii Élementarnykh Chastits, No. 6 (1975).Google Scholar
  14. 14.
    M. E. Gertsenshtein, Problemy Teorii Gravitatsii i Élementarnykh Chastits, No. 9, Atomizdat (1978), p. 172.Google Scholar
  15. 15.
    W. Isreal, Phys. Rev.,153, 1388 (1967); Phys. Lett.,21, 47 (1966).Google Scholar
  16. 16.
    M. E. Gertsenshtein and L. Kh. Ingel', Izv. Vyssh. Uchebn. Zaved., Fiz., No. 7, 85 (1981).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • M. E. Gertsenshtein
    • 1
  • M. Yu. Konstantinov
    • 1
  1. 1.Scientific-Research Institute of Nuclear Physics at the M. V. Lomonosov Moscow State UniversityUSSR

Personalised recommendations