Soviet Physics Journal

, Volume 28, Issue 1, pp 78–81 | Cite as

Toward a theory of particles with 3/2 spin

  • V. A. Pletyukhov
  • V. I. Strazhev
Physics of Elementary Particles and Field Theory


A detailed analysis is performed of the pattern of meshes of irreducible Lorentz group representations corresponding to the direct product of vector and bispinor representations within the framework of the Gel'fand-Yaglom approach, for the purpose of determining the possibility of constructing various relativistic wave equations describing particles with a maximum spin of 3/2. Two such new equations are constructed for a 3/2 spin, which differ from the generally known Rarita-Schwinger and Fierz-Pauli equations. The nonequivalence of the latter is also proven.


Detailed Analysis Wave Equation Group Representation Direct Product Lorentz Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    K. Jonson and E. C. G. Sudershan, Ann. Phys. Rev.,13, 126 (1961).Google Scholar
  2. 2.
    G. Velo and D. Zwanziger, Phys. Rev.,186, 1337 (1969);188, 2218.Google Scholar
  3. 3.
    R. A. Krajcik and M. M. Nieto, Amer. J. Phys.,45, 818 (1977).Google Scholar
  4. 4.
    Yu. V. Novozhilov, Introduction to Elementary Particle Theory [in Russian], Nauka, Moscow (1972).Google Scholar
  5. 5.
    I. M. Gel'fand, R. A. Minlos, and Z. Ya. Shapiro, Rotational Group and Lorentz Group Representations [in Russian], Fizmatgiz, Moscow (1958).Google Scholar
  6. 6.
    W. J. Hurley, Phys. Rev.,D4, 3605 (1971).Google Scholar
  7. 7.
    C. Fisk and W. Tait, J. Phys.,A6, 383 (1973).Google Scholar
  8. 8.
    V. I. Fishchich and A. G. Nikitin, Elem. Chast. At. Yad.,9, 501 (1978).Google Scholar
  9. 9.
    G. Labonte, Nuovo Cim.,75A, 69 (1983).Google Scholar
  10. 10.
    Mathews et al., J. Phys.,A15, 579 (1982).Google Scholar
  11. 11.
    V. A. Pletyukhov and V. I. Strazhev, Izv. Akad. Nauk Beloruss. SSR, Ser. Fiz.-Mat. Nauk, No. 1, 84 (1981).Google Scholar
  12. 12.
    W. J. Hurley and E. C. G. Sudarshan, J. Math. Phys.,16, 2093 (1975).Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • V. A. Pletyukhov
    • 1
  • V. I. Strazhev
    • 1
  1. 1.A. S. Pushkin Pedagogical InstituteBrest

Personalised recommendations