Advertisement

Soviet Physics Journal

, Volume 30, Issue 1, pp 24–38 | Cite as

Spectrum of excited states and the rotational mechanical field in a deformed crystal

  • V. E. Panin
  • Yu. V. Grinyaev
  • V. E. Egorushkin
  • I. L. Buchbinder
  • S. N. Kul'kov
Article

Keywords

Excited State Mechanical Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    V. E. Panin, V, A. Likhachev, and Yu. V. Grinyaev, Structural Levels of Deformation of Solids [in Russian], Nauka, Novosibirsk (1985).Google Scholar
  2. 2.
    V. E. Panin, Yu. V. Grinyaev, T. F. Elsukova, and A. G. Ivanchin, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 6, 5 (1982).Google Scholar
  3. 3.
    B. J. Halperin and D. R. Nelson, Phys. Rev. Lett.,19, 2457 (1979).Google Scholar
  4. 4.
    V. E. Panin and Yu. V. Grinyaev, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 1, 61 (1984).Google Scholar
  5. 5.
    R. De Witt, Continuum Theory of Dislocations [Russian translation], Mir, Moscow (1973).Google Scholar
  6. 6.
    E. Kreiner, General Continuum Theory of Dislocations and Intrinsic Stresses [Russian translation], Mir, Moscow (1965).Google Scholar
  7. 7.
    G. Kluge, Int. Z. Engin. Sci., 169 (1969).Google Scholar
  8. 8.
    Kadic, D. B. Edelen, A. Gange, Theory of Dislocations and Disclinations Lecture Notes, 174, Springer-Verlag, Heidelberg (1983).Google Scholar
  9. 9.
    H. Gunther, Ann. Phys.,40, No. 4/5, 220–226 (1983).Google Scholar
  10. 10.
    H. Kleinert, Lett. Nuovo Cimento,34, No. 15, 464–470 (1982).Google Scholar
  11. 11.
    H. Kleinert, Lett. Nuovo Cimento,34, No. 15, 476–477 (1982).Google Scholar
  12. 12.
    H. Kleinert, Lett. Nuovo Cimento, No. 2, 41–45 (1982).Google Scholar
  13. 13.
    V. E. Panin, I. L. Bukhbinder, Yu. V. Grinyaev, and V. E. Egorushkin, Preprint No. 9, (1986).Google Scholar
  14. 14.
    J. Eshelby, Continuum Theory of Dislocations [Russian translation], IL, Moscow (1963).Google Scholar
  15. 15.
    V. V. Rybin, Large Plastic Deformations and Fracture of Metals [in Russian], Metallurgiya, Moscow (1986).Google Scholar
  16. 16.
    T. V. Kibble in: Elementary Particles and Compensating Fields [Russian translation], Mir, Moscow (1964), p. 274.Google Scholar
  17. 17.
    A. E. Volkov, V. A. Likhachev, and L. S. Shikhobalov, Fiz. Met. Metalloved.,47, No. 6, 1127 (1974).Google Scholar
  18. 18.
    L. E. Volkov, V. A. Likhachev, and L. S. Shikhobalov, Fiz. Met. Metalloved.,51, No. 5, 935 (1981).Google Scholar
  19. 19.
    A. Barut and R. Ronchka, Theory of the Representation of Groups and Its Applications [Russian translation], Mir, Moscow (1981), Vols. 1 and 2, p. 455.Google Scholar
  20. 20.
    N. N. Konopleva and V. N. Popov, Gauge Fields [in Russian], Atomizdat, Moscow (1972).Google Scholar
  21. 21.
    B. A. Dubrovin, S. P. Novikov, and N. G. Fomenko, Modern Geometry [in Russian], Nauka, Moscow (1979).Google Scholar
  22. 22.
    V. E. Egorushkin, Fiz. Tverd. Tela,26, No. 3, 856 (1984).Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • V. E. Panin
    • 1
  • Yu. V. Grinyaev
    • 1
  • V. E. Egorushkin
    • 1
  • I. L. Buchbinder
    • 1
  • S. N. Kul'kov
    • 1
  1. 1.Institute of Strength and Materials EngineeringTomsk

Personalised recommendations