Russian Physics Journal

, Volume 35, Issue 3, pp 214–222 | Cite as

Models of polarized states of the physical vacuum and torsion fields

  • A. E. Akimov
  • V. Ya. Tarasenko


A model is proposed of the physical vacuum, taking into account the existence of fields generated by classical spins or angular momenta of rotation.


Angular Momentum Physical Vacuum Torsion Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    É. V. Shpol'skii, Atomic Physics [in Russian], GITTL, Moscow-Leningrad (1949).Google Scholar
  2. 2.
    A. D. Krish, “The spin of the proton,” Scientific American (May, 1979).Google Scholar
  3. 3.
    B. I. Spasskii and A. V. Moskovskii, Usp. Fiz. Nauk, No. 4 (1984).Google Scholar
  4. 4.
    A. C. Tam and W. Happer, Phys. Rev. Lett.,38, No. 6 (1977).Google Scholar
  5. 5.
    V. A. Tulin, Fiz. Nizk. Temp.,5, No. 9, 965–993 (1979).Google Scholar
  6. 6.
    V. S. L'vov, Nonlinear Spin Waves [in Russian], Nauka, Moscow (1987).Google Scholar
  7. 7.
    V. G. Pokazan'ev and G. V. Skrotskii, Usp. Fiz. Nauk,129, No. 4 (1979).Google Scholar
  8. 8.
    A. Abragam and M. Goldman, Nuclear Magnetism: Order and Disorder, Clarendon, Oxford (1982).Google Scholar
  9. 9.
    J. A. Wheeler, Einstein's Vision, Springer-Verlag, New York (1968).Google Scholar
  10. 10.
    L. B. Okun', The Physics of Elementary Particles [in Russian], Nauka, Moscow (1988).Google Scholar
  11. 11.
    N. P. Myshkin, Zh. Russ. Fiz.-Khim. Obshch., No. 3 (1906).Google Scholar
  12. 12.
    N. P. Myshkin, Zh. Russ. Fiz.-Khim. Obshch., No. 6 (1911).Google Scholar
  13. 13.
    D. D. Ivanenko, P. I. Pronin, and G. A. Sardanashvili, The Gauge Theory of Gravitation [in Russian], Izd. MGU, Moscow (1985).Google Scholar
  14. 14.
    I. D. Novikov and V. P. Frolov, The Physics of Black Holes [in Russian], Nauka, Moscow (1986).Google Scholar
  15. 15.
    S. Chandrasekhar, The Mathematical Theory of Black Holes, Clarendon, Oxford (1983).Google Scholar
  16. 16.
    N. A. Kozyrev, Causal or Asymmetric Mechanics in a Linear Approximation [in Russian], Izd. Akad. Nauk SSSR, Pulkovo (1958).Google Scholar
  17. 17.
    N. A. Kozyrev and V. V. Nasonov, Problems of Analysis of the Universe [in Russian], No. 9 (1980).Google Scholar
  18. 18.
    G. Ya. Vasil'eva, A. A. Shpital'naya, and N. S. Petrova, Ninth Congress on Solar Physics, Wroclaw (1978).Google Scholar
  19. 19.
    É. I. Nesmyanovich, in: The Deep Structure of the Earth-crust and the Upper Mankle of the Ukraine [in Russian], Naukova Dumka, Kiev (1984).Google Scholar
  20. 20.
    A. A. Grib, S. G. Mamaev, and V. M. Mostepanenko, Vacuum Quantum Effects in Strong Fields [in Russian], Énergoatomizdat, Moscow (1988).Google Scholar
  21. 21.
    P. Tompkins and C. Bird, The Secret Life of Plants, Harper and Row, New York (1973).Google Scholar
  22. 22.
    I. L. Gerlovin, The Foundations of the Unified Theory of All Interactions in Matter [in Russian], Énergoatomizdat, Leningrad (1990).Google Scholar
  23. 23.
    A. E. Akimov, Preprint No. 4, Institute of Mathematical Physics, Ukrainian Academy of Sciences, Kiev (1989).Google Scholar
  24. 24.
    L. D. Landau and E. M. Lifshits, Theoretical Physics, Vol. IV [in Russian], Nauka, Moscow (1968).Google Scholar
  25. 25.
    V. A. Dubrovskii, Dokl. Akad. Nauk SSSR,282, No. 1 (1985).Google Scholar
  26. 26.
    G. T. Butorin, Dep. VINITI, No. 5135-13737.Google Scholar
  27. 27.
    E. Cartan, C. R. Acad. Sci., Paris,174, 593 (1922).Google Scholar
  28. 28.
    E. Cartan, Ann. Ec. Norm. Sup.,40, 325 (1923).Google Scholar
  29. 29.
    E. Cartan, Ann. Ec. Norm. Sup.,41, 1 (1924).Google Scholar
  30. 30.
    E. Cartan, Ann. Ec. Norm. Sup.,42, 17 (1925).Google Scholar
  31. 31.
    E. Cartan, Lecons sur la Théorie des Spineurs, Hermann, Paris (1938).Google Scholar
  32. 32.
    V. De Sabbata and C. Sivaram, “Strong spin-torsion interaction between spinning protons,” Nuovo Cimento A, No. 101 (1989).Google Scholar
  33. 33.
    P. Dirac, Spinors in Hubert Space, Plenum, New York (1974).Google Scholar
  34. 34.
    Nonlinear Spinor Theory: Collection [Russian translation], Inostr. Lit., Moscow (1954).Google Scholar
  35. 35.
    R. Penrose and W. Rindler, Spinors and Space-Time, Cambridge University Press, New York (1984).Google Scholar
  36. 36.
    R. G. Jahn, Proc. IEEE,70, No. 2, 136–170 (1982).Google Scholar
  37. 37.
    M. R. Blondlot, Mem. Commun., Acad. Sci., (November 9, 1903).Google Scholar
  38. 38.
    A. A. Gurvich, The Theory of the Biological Field [in Russian], Sov. Nauka, Moscow (1944).Google Scholar
  39. 39.
    V. P. Kaznacheev and L. P. Mikhailova, Superweak Radiation in Intercell Interactions [in Russian], Izd. Siberian Branch of the Russian Academy of Sciences, Novosibirsk (1981).Google Scholar
  40. 40.
    I. M. Ternov and V. A. Bordovitsin, Usp. Fiz. Nauk, No. 2 (1980).Google Scholar
  41. 41.
    T. Pagot, Radies Thesie et Emission de Forme, Maloine, Paris (1978).Google Scholar
  42. 42.
    F. W. Hehl, “Spin and torsion in general relativity. I: foundations,” Gen. Relativity Grav., No. 4 (1973).Google Scholar
  43. 43.
    F. W. Hehl, P. von der Heyde, G. D. Kerlick, and J. M. Nester, “General relativity with spin and torsion: foundations and prospects,” Rev. Mod. Phys., No. 3 (1976).Google Scholar
  44. 44.
    E. Fischbach, D. Sudarsky, A. Szafer, C. Talmadge, and S. H. Aronson, “Long-range forces and Eötvös experiments,” Annals of Physics,182, 1–89 (1988).Google Scholar
  45. 45.
    V. G. Bagrov, A. A. Evseevich, and A. V. Shapovalov, Preprint No. 51, Tomsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences, Tomsk (1989).Google Scholar
  46. 46.
    V. G. Bagrov, O. V. Baurova, A. S. Vshivtsev, and B. N. Frolov, Preprint No. 33, Institute of Theoretical Physics, Siberian Branch of the Russian Academy of Sciences, Tomsk (1988).Google Scholar
  47. 47.
    V. G. Bagrov and V. A. Bordovitsin, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 2 (1980).Google Scholar
  48. 48.
    V. A. Zhelnorovich, The Theory of Spinors and Its Application to Physics and Mechanics, [in Russian], Nauka, Moscow (1982).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • A. E. Akimov
    • 1
  • V. Ya. Tarasenko
    • 1
  1. 1.Interdepartmental Scientific-Technological Center of Venture TechnologiesUSSR

Personalised recommendations