Soviet Physics Journal

, Volume 34, Issue 11, pp 1044–1047 | Cite as

Asymptotic freedom in the theory of a scalar field interacting with quantum R2 gravitation

  • K. E. Osetrin
  • I. L. Shapiro
Elementary Particle Physics and Field Theory


We considered asymptotic freedom in R2 gravitation interacting with N scalar fields. Numerical analysis of the beta functions showed that asymptotic freedom holds for all N; for N ≈ 500, only unstable solutions of the fixed-point equations exist.


Scalar Field Beta Function Unstable Solution Asymptotic Freedom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    K. S. Stelle, Phys. Rev.,16D, 953 (1977).Google Scholar
  2. 2.
    B. L. Voronov and I. V. Tyutin, Yad. Fiz.,39, 998 (1984).Google Scholar
  3. 3.
    E. S. Fradkin and A. A. Tseytlin (Tseitlin), Nucl. Phys.,B201, 469 (1982).Google Scholar
  4. 4.
    I. L. Bukhbinder, V. B. Vologodskii, Yu. Yu. Vol'fengaut, et al., Yad. Fiz.,49, 876 (1990); Yu. Yu. Vol'fengaut, I. L. Shapiro, and E. G. Yagunov, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 1, 36 (1990).Google Scholar
  5. 5.
    I. L. Shapiro, Yad. Fiz.,50, 257 (1989).Google Scholar
  6. 6.
    I. L. Shapiro, Yu. Yu. Vol'fengaut, and E. G. Yagunov, Yad. Fiz.,51, 1781 (1990).Google Scholar
  7. 7.
    I. G. Avramidi, Yad. Fiz.,44, 255 (1986).Google Scholar
  8. 8.
    I. L. Bukhbinder and I. L. Shapiro, Yad. Fiz.,44, 1033 (1986).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • K. E. Osetrin
    • 1
  • I. L. Shapiro
    • 1
  1. 1.Lenin Komsomol Pedagogical InstituteTomsk

Personalised recommendations