Soviet Physics Journal

, Volume 29, Issue 9, pp 713–718 | Cite as

Electromagnetic radiation of relativistic electrons in thick crystals

  • S. A. Vorob'ev
  • B. N. Kalinin
  • A. A. Kurkov
  • A. P. Polylitsyn
Nuclear Physics


Angular distributions of soft gamma quanta and spectra of electron radiation intensity are compared in diamond crystals of various thickness for axial orientation. Narrow directionality of the soft gamma quanta and a weak dependence of angular width of the distribution on crystal thickness are noted. For axial orientation the angular width of the soft gamma quantum distribution comprises Δθγ ≈ ± 2ψL for diamond, silicon, and tungsten crystals. Radiation losses into the collimator θc = 1/γ for axial orientation increases with thickness and reach their maximum value at t ≈0.1 radiation length. It is shown experimentally that maximum values of radiation loss into the cone γ−1 can be achieved in crystals of the light-elements.


Radiation Silicon Tungsten Angular Distribution Radiation Intensity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    M. A. Kumakhov and R. Wedell, Phys. Statics Solidi (b),92, 765 (1979).Google Scholar
  2. 2.
    Yu. N. Adishchev, S. A. Vorob'ev, et al., Yad. Fiz.,35, No. 1, 108 (1982).Google Scholar
  3. 3.
    V. N. Baier, V. M. Katkov, and V. M. Strakhovenko, Preprint 83-70, Novosibirsk (1983).Google Scholar
  4. 4.
    V. V. Beloshitskii and M. A. Kumakhov, Dokl. Akad. Nauk SSSR,259, No. 2, 341 (1981).Google Scholar
  5. 5.
    A. I. Akhiezer and N. F. Shul'ga, Usp. Fiz. Nauk,137, No. 4, 561 (1982).Google Scholar
  6. 6.
    Yu. N. Adishchev, P. S. Anan'in, S. A. Vorob'ev, et al., Pis'ma Zh. Eksp. Teor. Fiz.,30, No. 7, 430 (1979).Google Scholar
  7. 7.
    A. N. Aleinik, I. E. Vnukov, B. N. Kalinin, et al., Dep. VINITI, No. 5618-84.Google Scholar
  8. 8.
    I. A. Grishaev, G. D. Kovalenko, and V. I. Shramenko, Zh. Eksp., Teor. Fiz.,72, No. 2, 437 (1977).Google Scholar
  9. 9.
    A. I. Akhiezer, V. F. Boldyshev, and N. F. Shul'ga, EChAYa,10, No. 1, 51 (1979).Google Scholar
  10. 10.
    V. I. Truten', S. P. Fomin, and N. F. Shul'ga, Preprint KhFTI, Khar'kov (1982).Google Scholar
  11. 11.
    H. R. Avakian, V. I. Glebov, V. V. Goloviznin, et al., Rad. Effec.,82, No. 1–2, 1–18 (1984).Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • S. A. Vorob'ev
    • 1
  • B. N. Kalinin
    • 1
  • A. A. Kurkov
    • 1
  • A. P. Polylitsyn
    • 1
  1. 1.Nuclear Physics Scientific-Research Institute at S. M. Kirov Polytechnic InstituteTomsk

Personalised recommendations