Soviet Physics Journal

, Volume 24, Issue 2, pp 140–143 | Cite as

On gravitational and electromagnetic waves

  • A. N. Temchin


The characteristic manifolds of the systems of equations for the free gravitational and electromagnetic fields are considered. It is shown that these equations are compatible with the existence of wave fronts whose velocity may differ from c.


Manifold Electromagnetic Field Electromagnetic Wave Wave Front Characteristic Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    V. A. Belinskii and V. E. Zakharov, Zh. Eksp. Teor. Fiz.,75, 1953 (1978).Google Scholar
  2. 2.
    M. Born and E. Wolf, Principles of Optics, Pergamon Press (1970).Google Scholar
  3. 3.
    G. B. Whitham, Linear and Nonlinear Waves, Wiley-Interscience, New York (1974).Google Scholar
  4. 4.
    V. A. Fock, The Theory of Space, Time and Gravitation, Oxford (1964).Google Scholar
  5. 5.
    S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time, CUP (1973).Google Scholar
  6. 6.
    V. I. Zakharov, Gravitational Waves in Einstein's Theory of Gravitation [in Russian], Nauka, Moscow (1972).Google Scholar
  7. 7.
    A. Einstein, Collected Scientific Works, Vol. 1 [in Russian], Nauka, Moscow (1965).Google Scholar
  8. 8.
    L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, 4th ed., Pergamon Press, Oxford (1975).Google Scholar
  9. 9.
    J. L. Synge, Relativity, the General Theory, Amsterdam (1960).Google Scholar
  10. 10.
    P. A. M. Dirac, The General Theory of Relativity [Russian translation], Atomizdat, Moscow (1978).Google Scholar
  11. 11.
    C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation, W. H. Freeman, San Francisco (1973).Google Scholar
  12. 12.
    M. Rees, R. Ruffini, and J. A. Wheeler, Black Holes, Gravitational Waves, and Cosmology [in Russian], Mir, Moscow (1977).Google Scholar
  13. 13.
    G. W. Gibbons and S. W. Hawking, Phys. Rev.,4, 2191 (1971).Google Scholar
  14. 14.
    I. G. Petrovskii, Lectures on Partial Differential Equations [in Russian], FM, Moscow (1961).Google Scholar
  15. 15.
    R. Courant, Partial Differential Equations [Russian translation], Mir, Moscow (1964).Google Scholar
  16. 16.
    A. N. Temchin, Izv. Vyssh. Uchebn. Zaved. Fiz., No. 8, 87 (1980).Google Scholar
  17. 17.
    A. A. Vlasov and V. N. Folomeshkin, Teor. Mat. Fiz.,38, 147 (1979).Google Scholar
  18. 18.
    A. Z. Petrov, New Methods in the General Theory of Relativity [in Russian], Nauka, Moscow (1966).Google Scholar
  19. 19.
    A. Lichnerowicz, Theories Relativistes de la Gravitation et l'Electromagnetisme, Masson and Cie, Paris (1955).Google Scholar
  20. 20.
    A. N. Temchin, Izv. Vyssh. Uchebn. Zaved. Fiz., No. 11, 58 (1980).Google Scholar
  21. 21.
    V. L. Pelykh, in: Mathematical Methods and Physicomechanical Fields, No. 3 [in Russian], Naukova Dumka, Kiev (1976).Google Scholar
  22. 22.
    V. L. Pelykh, in: Proc. All-union Conference on Partial Differential Equations [in Russian], Izd. MGU, Moscow (1978).Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • A. N. Temchin

There are no affiliations available

Personalised recommendations