Advertisement

Soviet Physics Journal

, Volume 32, Issue 5, pp 398–401 | Cite as

Precession of a gyroscope for the nonregular generalized finslerian metric gij = e2σ(x,y)aij(x)

  • A. K. Aryngazin
Elementary Particle Physics and Field Theory

Abstract

The post-Newtonian problem of the precession of the axis of rotation of a gyroscope rotating around the earth in relation to distant stars belongs to a number of “nonclassical” verifications of the consequences of the theory of gravitation with an independent determination of the post-Newtonian parameters. A generalized Fermi-Walker transport equation is constructed and the problem of precession of a gyroscope is solved for the nonregular generalized Finslerian metric gij=e2σ(x,y)aij, where aij signifies the Riemannian metric tensor. The result contains a contribution in addition to the usual Riemannian PPN-terms, proportional to the parameter σa characterizing the dependence of σ on the speed of motion.

Keywords

Transport Equation Independent Determination Distant Star 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    H. Rund, Differential Geometry of Finsler Spaces, Springer, Berlin (1953).Google Scholar
  2. 2.
    G. S. Asanov, Finsler Geometry, Relativity and Gauge Theories, D. Reidel, Dordrecht (1985).Google Scholar
  3. 3.
    M. Hashiguchi, Ana. Stiin ale Univ. “Al. I Cuza” din Iasi,30, 69–73 (1984).Google Scholar
  4. 4.
    R. Miron, J. Math. Kyoto Univ.,23, 219–224 (1983).Google Scholar
  5. 5.
    T. Okubo, Tensor O. S.,3, 48–55 (1940).Google Scholar
  6. 6.
    S. Watanabe, J. Nat. Acad. Math.,1, 79–85 (1983).Google Scholar
  7. 7.
    R. K. Tavakol and N. vanden Bergh, Phys. Lett.,112A, 23–25 (1985).Google Scholar
  8. 8.
    C. W. Misner, K. S. Torne, and J. A. Wheeler, Gravitation, Freeman, San Francisco (1973).Google Scholar
  9. 9.
    S. Watanabe and S. Ikeda, Tensor N. S.,40, 97–102 (1983).Google Scholar
  10. 10.
    S. Watanabe and S. Ikeda, Tensor N. S.,39, 37–41 (1982).Google Scholar
  11. 11.
    C. M. Will, Theory and Experiment in Gravitational Physics, Cambridge University Press, Cambridge (1981).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • A. K. Aryngazin
    • 1
  1. 1.M. V. Lomonosov Moscow State UniversityUSSR

Personalised recommendations