Applied physics

, Volume 11, Issue 1, pp 75–79 | Cite as

Power resonances in a Raman gas laser

  • Ye. V. Baklanov
  • I. M. Beterov
  • V. P. Chebotayev
  • B. Ya. Dubetsky
Contributed Papers


The observation of a new type of resonance due to double-quantum transitions in the standing-wave field of a Raman gas laser is reported. A resonance dip with a width equal to that of the optically forbidden transition was experimentally detected in the output-vs-timing curve of a Raman Ne laser (λ=1.15 m) upon pumping by radiation of a He−Ne laser at 1.52 m. The theory presented shows that the resonance arises in the third order of perturbation theory when in resonant SRS the line is inhomogeneously broadened. The resonance can be considered as resulting from the overlap of dips in the velocity distribution of the nonlinear polarization induced by the standing laser wave.

PACS Codes

42.60 32 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. M. Beterov, V. P.Chebotayev: JETP Letters9 216 (1969)Google Scholar
  2. 2.
    I. M. Beterov, Yu. A. Matyugin, V. P. Chebotayev: Optika i Spektroskopia28, 357 (1970)Google Scholar
  3. 3.
    I. M. Beterov, Yu. A. Matyugin, V. P. Chebotayev: JETP Letters10, 296 (1969), JETP64, 1495 (1973)Google Scholar
  4. 4.
    The 1.15 μm laser did not possess such distinctive features under the action of the field at λ=0.63 μm. Its characteristics can be described in terms of population effects with the sufficient degree of an accuracy.Google Scholar
  5. 5.
    L. S. Vasilenko, V. P. Chebotayev, A. V. Shishayev: JETP Letters12, 161 (1970)Google Scholar
  6. 6.
    M. S. Feld, A. Javan: Phys. Rev.177, 540 (1969),CrossRefADSGoogle Scholar
  7. 6a.
    Th. Hänsch, P. Toschek: Z. Physik236, 213 (1970);CrossRefGoogle Scholar
  8. 6b.
    B. J. Feldman, M. S. Feld: Phys. Rev. A5, 899 (1972)CrossRefADSGoogle Scholar
  9. 7.
    T. Ya. Popova, A. K. Popov, S. G. Rautian, R. I. Sokolovsky: JETP57, 850 (1969)Google Scholar
  10. 8.
    I. M. Beterov, V. P. Chebotayev: InProgress in Quantum Electronics, Vol. 3, pts. 1, 3, Ed. by J. H. Sanders and S. Stenholm (Pergamon Press, London 1974)Google Scholar
  11. 9.
    The level 1 lies below the level 2, as a rule. Therefore, the condition of the gain on the adjacent transition will always be fulfilled under the action of the intensive pumping.Google Scholar
  12. 10.
    R. M. Martin, L. M. Falicov: InLight Scattering in Solids, ed. by M. Cordona, Topics Appl. Phys.8 (Springer, Berlin, Heidelberg, New York 1975)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Ye. V. Baklanov
    • 1
  • I. M. Beterov
    • 1
  • V. P. Chebotayev
    • 1
  • B. Ya. Dubetsky
    • 1
  1. 1.Institute of Semiconductor PhysicsSiberian Branch of the USSR Academy of SciencesNovosibirskUSSR

Personalised recommendations