Applied physics

, Volume 20, Issue 4, pp 313–317 | Cite as

A note on scalar Hertz potentials for gyrotropic media

  • S. Przeźiecki
  • R. A. Hurd
Contributed Papers


The scalar Hertz potentials are generalized to the case of electromagnetic fields in gyrotropic media. Expressions for electromagnetic fields in terms of two potentials are presented and the system of differential equations for the potentials is derived. The result are summarized in the form of a theorem. The case of a stratified gyrotropic medium with parameters varying along the distinguished axis has been considered also. Scalar “superpotentials” satisfying a fourth-order partial differential equation are introduced. They allow expressions for electromagnetic fields to be found in terms of one scalar superpotential only. Basic results on scalar Hertz potentials in isotropic media are recalled.




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H.Hertz: Ann. Phys. Chemie36, 1–22 (1889)ADSGoogle Scholar
  2. 2.
    J.A.Stratton:Electromagnetic theory (McGraw-Hill, New York 1941)MATHGoogle Scholar
  3. 3.
    H.Hönl, A.W.Maue, K.Westpfahl: Theorie der Beugung, inEncyclopedia of Physics, Vol. 25/1 (Springer, Berlin, Göttingen, Heidelberg 1961)Google Scholar
  4. 4.
    S.Preździecki, R.A.Hurd.: Diffraction by a half-plane perpendicular to the distinguished axis of a gyrotropic medium (oblique incidence) (a paper in preparation)Google Scholar
  5. 5.
    K.Bochenek:Methods of analysis of electromagnetic fields (PWN, Warszawa 1961) (in Polish)Google Scholar
  6. 6.
    S.Przeździecki, W.Laprus: “Representation of electromagnetic fields in gyrotropic media in terms of scalar Hertz potentials,” Inst. Fund. Techn. Research Polish Acad. Sci. Report 17/1978 (in Polish)Google Scholar
  7. 7.
    P.C.Clemmow: Proc. IEE (London)110, 101–106 (1963)Google Scholar
  8. 8.
    S.Przeździecki: J. Appl. Phys.37, 2768–2775 (1966)CrossRefADSGoogle Scholar
  9. 9.
    A.Kujawski, S.Przeździecki: Bull. Acad. Pol. Sci. Ser. sci. math. astr. phys.21, 955–962 (1973)Google Scholar
  10. 10.
    P.S.Epstein: Rev. Mod. Phys.28, 3–17 (1956)CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • S. Przeźiecki
    • 1
  • R. A. Hurd
    • 1
  1. 1.Division of Electrical EngineeringNational Research Council of CanadaOttawaCanada

Personalised recommendations