Soviet Physics Journal

, Volume 22, Issue 11, pp 1157–1160 | Cite as

Equations of state for strongly anharmonic crystals with a complex lattice

  • V. I. Zubov
  • S. Sh. Suleiman
Article
  • 14 Downloads

Abstract

On the basis of a nonsymmetrized self-consistent-field approximation, thermal and caloric equations of state for strongly anharmonic crystals with a complex lattice are considered, allowing, in principle, anharmonism of any desired (basically, even) order to be taken into account. These equations include the moments of single-particle distribution functions, which are the solutions of some system of transcendental equations. More detailed consideration is given to the case of binary crystals with strong fourth-order anharmonism. The possibility of obtaining corrections to the approximation adopted is also discussed.

Keywords

Distribution Function Transcendental Equation Detailed Consideration Complex Lattice Caloric Equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    M. Born and H. Kun, Dynamical Crystal Theory of Lattices, Oxford Univ. Press (1954).Google Scholar
  2. 2.
    G. Leibfrid, Microscopic Theory of Mechanical and Thermal Crystal Properties [Russian translation], GIFML, Moscow (1963).Google Scholar
  3. 3.
    G. Leibfrid and V. Ludwig, Theory of Anharmonic Effects in Crystals [Russian translation], IL, Moscow (1963).Google Scholar
  4. 4.
    G. K. Horton, J. L. Feldman, and M. L. Klein, Phys. Rev.,184, 968 (1969).Google Scholar
  5. 5.
    M. L. Klein and G. K. Horton, J. Low Temp. Phys.,9, 151 (1972).Google Scholar
  6. 6.
    T. Shiklosh, JINR Preprint R4-6497, Dubna (1972).Google Scholar
  7. 7.
    N. M. Plakida, in: Statistical Physics and Quantum Field Theory [in Russian], Nauka, Moscow (1973), p. 205.Google Scholar
  8. 8.
    V. I. Zubov, Vestn. Mosk. Gos. Univ., Fiz., Astron.,13, No. 1, 104 (1972).Google Scholar
  9. 9.
    V. I. Zubov, in: Problems of Statistical Physics and Field Theory [in Russian], UDN, Moscow (1972), p. 45.Google Scholar
  10. 10.
    V. I. Zubov, Ann. Phys. (DDR),31, 33 (1974);32, 93 (1975);33, 103 (1976).Google Scholar
  11. 11.
    V. I. Zubov, Problems of Statistical Crystal Theory [in Russian], UDN, Moscow (1975).Google Scholar
  12. 12.
    V. I. Zubov, Phys. Status Solidi (b),87, 385;88, 43 (1978).Google Scholar
  13. 13.
    V. I. Zubov, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 3, 62 (1979).Google Scholar
  14. 14.
    Ya. P. Terletskii and V. I. Zubov, Vestn. Mosk. Gos. Univ., Fiz., Astron., No. 5, 53 (1968); Ann. Phys. (DDR),24, 97 (1970).Google Scholar
  15. 15.
    E. T. Whittaker and G. N. Watson, Course of Modern Analysis, Vol. 2, Cambridge University Press (1927).Google Scholar
  16. 16.
    L. C. Pauling, The Nature of the Chemical Bond, Cornell Univ. Press (1967).Google Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • V. I. Zubov
    • 1
  • S. Sh. Suleiman
    • 1
  1. 1.Patrice Lumumba UniversityUSSR

Personalised recommendations