Soviet Applied Mechanics

, Volume 11, Issue 8, pp 820–826 | Cite as

Dynamic response of elastic and viscoelastic reinforced hollow cylinders

  • V. G. Karnaukhov
  • V. I. Kozlov
  • N. K. Kucher


Dynamic Response Hollow Cylinder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    A. A. Il'yushin and B. E. Pobedrya Fundamentals of the Mathematical Theory of Thermoviscoelasticity [in Russian], Nauka, Moscow (1970).Google Scholar
  2. 2.
    B. G. Karnaukhov and V. I. Kozlov, “Propagation of nonstationary perturbations in a viscoelastic medium,” Prikl. Mekh.,10, No. 7 (1974).Google Scholar
  3. 3.
    A. D. Kovalenko and B. G. Karnaukhov, “Dynamical problems for reinforced viscoelastic cylinders and spheres,” Prikl. Mekh.,7, No. 12 (1971).Google Scholar
  4. 4.
    A. A. Koltunov, B. I. Panshin, and M. A. Koltunov, “Analysis of nonlinear polymer creep,” Mekh. Polim., No. 3 (1969).Google Scholar
  5. 5.
    G. S. Larionov, “Solution of some dynamic problems of the theory of viscoelasticity by the averaging method,” Mekh. Polim., No. 2 (1970).Google Scholar
  6. 6.
    Yu. A. Mitropol'skii, The Averaging Method in Nonlinear Mechanics [in Russian], Naukova Dumka, Kiev (1971).Google Scholar
  7. 7.
    Yu. A. Mitropol'skii and A. N. Filatov, “Averaging of integrodifferential and integral equations,” Ukrainsk. Mat. Zh.,24, No. 1 (1972).Google Scholar
  8. 8.
    V. V. Moskvitin, Resistance of Viscoelastic Materials [in Russian], Nauka, Moscow (1972).Google Scholar
  9. 9.
    B. E. Pobedrya, “Problem of a viscoelastic tube under pressure with a variable radius,” Prob. Prochn., No. 1 (1969).Google Scholar
  10. 10.
    A. N. Filatov, “Asymptotic methods in the nonlinear theory of viscoelasticity,” Mekh. Polim., No. 2 (1974).Google Scholar
  11. 11.
    R. W. Hamming, Numerical Methods for Scientists and Engineers, McGraw-Hill, New York (1962).Google Scholar
  12. 12.
    J. D. Achenbach, “Dynamic repsonse of a long casebonded viscoelastic cylinder,” AIAA J.3, No. 4 (1965).Google Scholar
  13. 13.
    J. D. Achenbach, “Dynamic response of a viscoelastic cylinder with ablating inner surface,” Trans. ASME, Ser. E, No. 2 (1966).Google Scholar
  14. 14.
    N. G. Huang, E. H. Lee, and T. G. Rogers, “On influence of viscoelastic compressibility in stress analysis,” in: Proceedings of the Fourth International Congress on Rheology, Vol. 2 (1965).Google Scholar
  15. 15.
    T. M. Jones, “Viscoelastic stresses due to internal pressurization of a solid propellant rocket grain,” Develop. Theor. Appl. Mech.,2 (1965).Google Scholar
  16. 16.
    T. G. Rogers and E. H. Lee, “The cylinder problem in viscoelastic stress analysis,” Quart. Appl. Math.,22, No. 1 (1964).Google Scholar
  17. 17.
    T. Ting, “Remarks on linear viscoelastic stress analysis in cylinder problems,” in: Proceedings of the Ninth Midwestern Mechanics Conference (1965).Google Scholar
  18. 18.
    E. C. Ting, “Stress analysis in linear viscoelastic cylinders,” AIAA J.,8, No. 1 (1970).Google Scholar

Copyright information

© Plenum Publishing Corporation 1975

Authors and Affiliations

  • V. G. Karnaukhov
  • V. I. Kozlov
  • N. K. Kucher

There are no affiliations available

Personalised recommendations