Skip to main content
Log in

Divergences in a nonsteady universe

  • Physics of Elementary Particles and Field Theory
  • Published:
Soviet Physics Journal Aims and scope

Abstract

The structure of divergences of the vacuum mean <T> energy-momentum tensor is investigated by a simple model (a linear massive scalar field with nonconformal coupling in a spatially plane isotropic universe). The class R of physically permissible vacuums [0> is isolated; when∥0>⊂R the tensor <T> contains only standard local (power-law and logarithmic) divergences; in the general case the condition that the Hamiltonian be diagonal and the “quantum equivalence principle” lead to ∥0>R . The nongeometric structure of power-law divergences, which does not allow their elimination by renormalization of the constants in the generalized gravitational action, is established by a new regularization method (covariant smoothing of a δ-function). It is shown that all local divergences are eliminated by renormalization according to the Pauli-Villars scheme; it gives the same final results as do the adiabatic and n-wave computational procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. B. De Witt, Phys. Rev.,19, 295 (1975).

    Google Scholar 

  2. A. A. Grib, S. G. Mamaev, and V. M. Mostepanenko, Quantum Effects in Intense External Fields [in Russian], Atomizdat, Moscow (1980).

    Google Scholar 

  3. K. A. Bronnikov and V. G. Lapchinskii (V. G. Lapchinsky), Phys. Lett.,117B, 387 (1982).

    Google Scholar 

  4. Y. Fujii, Phys. Lett.,107B, 51 (1981).

    Google Scholar 

  5. M. B. Voloshin and A. D. Dolgov, Yad. Fiz.,35, 213 (1982).

    Google Scholar 

  6. N. A. Chernikov and E. A. Tagirov, Ann. Inst. H. Poincare,9A, 109 (1968); K. A. Bronnikov and E. A. Tagirov, Preprint JINR R2-4151, Dubna (1968).

    Google Scholar 

  7. B. Chakraborty, J. Math. Phys.,14, 188 (1973).

    Google Scholar 

  8. N. N. Bogolyubov and D. V. Shirkov, Introduction to the Theory of Quantized Fields [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  9. M. Castagnino et al., Nuovo Cimento,60A, 138 (1980).

    Google Scholar 

  10. A. A. Kharkov, Phys. Lett., 87A, 223 (1982);88A, 109 (1982).

    Google Scholar 

  11. S. G. Mamev and V. M. Mostepanenko, Yad. Fiz.,37, No. 5, 1323 (1983).

    Google Scholar 

  12. M. Brown and C. Dutton, Phys. Rev.,D18, 4422 (1978).

    Google Scholar 

  13. J. L. Synge, Relativity: The General Theory, Elsevier (1960).

  14. I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Series, and Products, Academic Press (1966).

  15. A. Duncan, Phys. Rev.,D17, 964 (1978).

    Google Scholar 

  16. T. S. Bunch, J. Phys. A,13, 1297 (1980).

    Google Scholar 

  17. C. Bernard and A. Duncan, Ann. Phys. (N.Y.),107, 201 (1977).

    Google Scholar 

  18. A. Vilenkin, Nuovo Cimento,44A, 441 (1978).

    Google Scholar 

  19. Ya. B. Zel'dovich and A. A. Starobinskii, Zh. Eksp. Teor. Fiz.,61, 2161 (1971).

    Google Scholar 

  20. L. Parker and S. A. Fulling, Phys. Rev.,D9, 341 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 12, pp. 24–29, December, 1983.

The author is sincerely grateful to Profs. K. P. Stanyukovich, Yu. S. Vladimirov, V. G. Lapchinskii, V. N. Mel'nikov, S. G. Mamaev, V. M. Mostepanenko, and other colleagues for fruitful discussions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bronnikov, K.A. Divergences in a nonsteady universe. Soviet Physics Journal 26, 1083–1088 (1983). https://doi.org/10.1007/BF00894638

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00894638

Keywords

Navigation