Advertisement

Soviet Physics Journal

, Volume 24, Issue 1, pp 53–56 | Cite as

Lyapunov stability of scalar charged solitons

  • A. Kumar
  • V. P. Nisichenko
  • Yu. P. Rybakov
Article

Abstract

The direct Lyapunov method is used to investigate the stability of charged solitons of pulson type described by a relativistic complex scalar field in a model of general form. It is shown that the stability can only be conditional. Some necessary and sufficient conditions for stability of stationary solitons for a fixed charge are formulated. Examples of models with power-law and logarithmic nonlinearities are considered.

Keywords

Soliton Scalar Field Complex Scalar Lyapunov Stability Fixed Charge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    V. G. Makhan'kov, Phys. Rep.,35, 1 (1978).Google Scholar
  2. 2.
    L. D. Faddeev and V. E. Korepin, Phys. Rep.,42, 1 (1978).Google Scholar
  3. 3.
    V. I. Zubov, Lyupunov Methods and Their Application [in Russian], Izd. LGU, Leningrad (1957).Google Scholar
  4. 4.
    A. A. Movchan, Prikl. Mat. Mekh.,24, 988 (1960).Google Scholar
  5. 5.
    A. M. Slobodkin, Dokl. Akad. Nauk SSSR,157, 63 (1964).Google Scholar
  6. 6.
    Yu. P. Rybakov, in: Problems of Statistical and Quantum Physics [in Russian], Izd. UDN, Moscow (1978), p. 91.Google Scholar
  7. 7.
    R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. 1, New York (1953).Google Scholar
  8. 8.
    L. G. Zastavenko, Prikl. Mat. Mekh.,29, 430 (1965).Google Scholar
  9. 9.
    Yu. P. Rybakov, in: Problems of the Theory of Gravitation and Elementary Particles [in Russian] (ed. K. P. Stanyukovich), Atomizdat, Moscow (1966), p. 68.Google Scholar
  10. 10.
    N. G. Vakhitov and A. A. Kolokolov, Izv. Vyssh. Uchebn. Zaved. Radiofiz.,16, 1020 (1973).Google Scholar
  11. 11.
    E. P. Zhikov and V. P. Shirikov, ZhVM and MF,4, 804 (1964).Google Scholar
  12. 12.
    J. L. Synge, Proc. R. Ir. Acad. Sect. A:62, 17 (1961).Google Scholar
  13. 13.
    S. Coleman, V. Glaser, and A. Martin, Commun. Math. Phys.,58, 211 (1978).Google Scholar
  14. 14.
    F. G. Tricomi, Differential Equations, London (1961).Google Scholar
  15. 15.
    I. Bialynicki-Birula and J. Mycielski, Bull. Acad. Pol. Sci., C1. 3:23, 467 (1975).Google Scholar
  16. 16.
    I. L. Bogolyubskii, Preprint R2-12232 [in Russian], JINR, Dubna (1979).Google Scholar
  17. 17.
    Yu. P. Rybakov, Vestn. MGU, Ser. III, No. 6, 62 (1965).Google Scholar
  18. 18.
    Yu. P. Rybakov, Vestn. MGU, Ser. III, No. 1, 72 (1966).Google Scholar
  19. 19.
    T. H. R. Skyrme, Nucl. Phys.,31, 556 (1962).Google Scholar
  20. 20.
    R. Friedberg, T. D. Lee, and A. Sirlin, Phys. Rev., D13, 2739 (1976).Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • A. Kumar
    • 1
  • V. P. Nisichenko
    • 1
  • Yu. P. Rybakov
    • 1
  1. 1.Patrice Lumumba Friendship of Nations UniversityMoscow

Personalised recommendations