Mathematical Geology

, Volume 24, Issue 3, pp 269–286 | Cite as

Linear coregionalization model: Tools for estimation and choice of cross-variogram matrix

  • M. Goulard
  • M. Voltz


The geostatistical analysis of multivariate data involves choosing and fitting theoretical models to the empirical matrix. This paper considers the specific case of the model of linear coregionalization, and describes an automated procedure for fitting models, that are adequate in the mathematical sense, using a least-squares like technique. It also describes how to decide whether the number of parameters of the cross-variogram matrix model should be reduced to improve stability of fit. The procedure is illustrated with an analysis of the spatial relations among the physical properties of an alluvial soil. The results show the main influence of the scale and the shape of the basic models on the goodness of fit. The choice of the number of basic models appears of secondary importance, though it greatly influences the resulting interpretation of the coregionalization analysis.

Key words

cross-variogram least-squares principal component analysis multitable analysis spatial analysis soil physical properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aboufirassi, M., and Marino, M. A., 1984, Cokriging of Aquifer Transmissivities from Field Measurements of Transmissivity and Specific Capacity: Math. Geol., v. 16, p. 19–35.Google Scholar
  2. Ahmed, S., and De Marsily, G., 1987, Comparison of Geostatistical Methods for Estimating Transmissivity Using Data on Transmissivity and Specific Capacity: Water Res. Res., v. 23, p. 1717–1737.Google Scholar
  3. Avery, B. W., and Bascomb, C. L., 1974, Soil Survey Laboratory Methods: Soil Survey Technical Monograph, n. 6, Rothamsted Experimental Station, Harpenden.Google Scholar
  4. Cosby, B. J., Hornberger, G. M., Clapp, R. B., and Ginn, T. R., 1984, A Statistical Exploration of the Relationships of Soil Moisture Characteristics to the Physical Properties of Soils: Water Res. Res. v. 20, p. 682–690.Google Scholar
  5. Dacunha-Castelle, D., and Duflo, M., 1983, Probabilités et Statistiques 2. Problèmes à Temps Mobiles: Masson, Paris, 286 p.Google Scholar
  6. Escoufier, Y., 1987, The duality diagram: A means for better practical applications: in P. Legendre and L. Legendre (Eds.), Developments in Numerical Ecology: Springer Verlag, Berlin, p. 139–156.Google Scholar
  7. Goulard, M., 1988, Inference in a Coregionalization Model in M. Armstrong (Ed.), Geostatistics, Vol. I, Proceedings of the 3rd International Geostatistics Congress: Kluwer Academic Publishers, Dordrecht, p. 397–408.Google Scholar
  8. Journel, A. G., and Huijbregts, C. J., 1978, Mining Geostatistics: Academic Press, London, 600 p.Google Scholar
  9. Kaar, A. F., 1986, Inference for Stationary Random Fields Given Poisson Samples: Adv. Appl. Probl., v. 18, p. 406–422.Google Scholar
  10. Matheron, G., 1982, Pour une Analyse Krigeante des Données Régionalisées: Rapport Technique N732, Ecole Nationale Supérieure des Mines de Paris, 22 p.Google Scholar
  11. Myers, D. E., 1982, Matrix Formulation of Co-Kriging: Math. Geol., v. 14, p. 249–257.Google Scholar
  12. McBratney, A. B., and Webster, R., 1986, Choosing Functions for Semi-Variograms of Soil Properties and Fitting Them to Sampling Estimates: J. Soil Sci., v. 37, p. 617–639.Google Scholar
  13. Rao, C. R., 1980, Matrix Approximations and Reduction of Dimensionality in Multivariate Statistical Analysis, in Multivariate Analysis-V, P. R. Krishnaiah (Ed.), North-Holland Publishing Company, Amsterdam, p. 3–22.Google Scholar
  14. Voltz, M., 1986, Variabilité Spatiale des Propriétés Physiques du sol en Milieu Alluvial: Thèse de Docteur Ingénieur, ENSA, Montpellier, 198 p.Google Scholar
  15. Wackernagel, H., 1988, Geostatistical Techniques for Interpreting Multivariate Spatial information, in C. F. Chung (Ed.), Quantitative Analysis of Mineral and Energy Resources: Proceedings of the NATO Conference, Reidel, Dordrecht, p. 393–409.Google Scholar
  16. Webster, R., and McBratney, A. B., 1989, On the Akaike Information Criterion: J. Soil Sci. v. 40, p. 493–496.Google Scholar
  17. Whittle, P., 1954, On Stationary Processes in the Plane: Biometrika, v. 41, p. 434–449.Google Scholar
  18. Yates, S. R., and Warrick, A. W., 1987, Estimating Soil Water Content Using Cokriging: Soil Sci. Soc. Am. J., v. 51, p. 23–30.Google Scholar

Copyright information

© International Association for Mathematical Geology 1992

Authors and Affiliations

  • M. Goulard
    • 1
  • M. Voltz
    • 2
  1. 1.Laboratoire de Biométrie, I.N.R.A.MontfavetFrance
  2. 2.Laboratoire de Science du sol, I.N.R.A.Montpellier Cedex 1France

Personalised recommendations