Soviet Physics Journal

, Volume 24, Issue 12, pp 1131–1134 | Cite as

Determination of the quasicontinuous defect-energy distribution for a disordered insulator by thermally stimulated depolarization

  • Yu. A. Gorokhovatskii


A method is described for determining the quasicontinuous energy distribution of the electrically active defects in a disordered insulator from a family of thermally stimulated depolarization-current curves as measured for various polarization temperatures. It is shown that the method is comparable in informativeness with the method of fractional thermally stimulated depolarization while it is technically simpler to operate. Results are presented from a study on the defect energy distributions in amorphous films of silicon monoxide.


Silicon Energy Distribution Active Defect Polarization Temperature Amorphous Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    A. I. Gubanov, The Quantum-Electronic Theory of Amorphous Conductors [in Russian], Izd. Akad. Nauk SSSR, Moscow and Leningrad (1963).Google Scholar
  2. 2.
    B. T. Kolomiets and V. M. Lyubin, Phys. Status Solidi (a),17, 11–16 (1973).Google Scholar
  3. 3.
    T. Hino, K. Suzuki, and K. Yamashita, Jpn. J. Appl. Phys.,12, 651–656 (1973).Google Scholar
  4. 4.
    Yu. A. Gorokhovatskii, Izv. Akad. Nauk Latv. SSR, Ser. Fiz. Tekhn., No. 4, 23–28 (1973).Google Scholar
  5. 5.
    A. K. Jounscher, J. Electrochem. Soc.,116, No. 6, 217C-226C (1969).Google Scholar
  6. 6.
    É. L. Lutsenko and L. D. Rozenshtein, Fiz. Tekh. Poluprovodn.,3, 986–990 (1969).Google Scholar
  7. 7.
    H. Gobrecht and D. Hofmann, J. Phys. Chem. Solids,27, 509–522 (1966).Google Scholar
  8. 8.
    J. G. Simmons and M. C. Tam, Phys. Rev. B. Solid State,7, No. 8, 3706–3713 (1973).Google Scholar
  9. 9.
    A. Samoc, M. Samoc, J. Sworakowski, et al., Phys. Status Solidi (a),37, 271–278 (1976).Google Scholar
  10. 10.
    D. Carles, C. Vautier, and A. Touraine, Thin Solid Films,9, 219–228 (1972).Google Scholar
  11. 11.
    É. A. Silin'sh, The Electronic States of Organic Molecular Crystals [in Russian], Zinatne, Riga (1978).Google Scholar
  12. 12.
    A. M. Andriesh, S. D. Shutov, V. G. Abashkin, and M. R. Chernyi, Fiz. Tekh. Poluprovodn.,8, 1936–1941 (1974).Google Scholar
  13. 13.
    Yu. A. Gorokhovatskii and A. N. Gubkin, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 12, 7–13 (1979).Google Scholar
  14. 14.
    J. G. Simmons and G. W. Taylor, Solid State Electron.,17, No. 2, 125–130 (1974).Google Scholar
  15. 15.
    Yu. A. Gorokhovatskii and V. I. Zhdanok, in: The Electret Effect and Electrical Relaxation [in Russian], Izd. MIEM, Moscow (1979), 34–48.Google Scholar
  16. 16.
    T. Hino, Jpn. J. Appl. Phys.,12, No. 4, 611; 612 (1973).Google Scholar
  17. 17.
    Yu. A. Gorokhovatskii, V. I. Zhdanok, and V. I. Zvyagin, Abstracts for the Republican Conference on Radiation Damage in Solids, Part 1 [in Russian], Kiev (1974), pp. 144–146.Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • Yu. A. Gorokhovatskii
    • 1
  1. 1.Moscow Electronic Engineering InstituteUSSR

Personalised recommendations