Advertisement

Mathematical Geology

, Volume 21, Issue 3, pp 347–362 | Cite as

To be or not to be... stationary? That is the question

  • D. E. Myers
Articles

Abstract

Stationarity in one form or another is an essential characteristic of the random function in the practice of geostatistics. Unfortunately it is a term that is both misunderstood and misused. While this presentation will not lay to rest all ambiguities or disagreements, it provides an overview and attempts to set a standard terminology so that all practitioners may communicate from a common basis. The importance of stationarity is reviewed and examples are given to illustrate the distinctions between the different forms of stationarity.

Key words

stationarity second-order stationarity variograms generalized covariances drift 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alfaro, M., 1979, Etude de la robustesse des simulations de fonctions aleatoires; Doc-Ing. Thesis, Centre de Geostatistique, ENSMP, 161 p.Google Scholar
  2. Alfaro, M., 1984, Statistical Inference of the Semivariogram and the Quadratic Model, p. 45–53in G. Verly, M. David, A. G. Journel, and A. Marechal (eds.), Geostatistics for Natural Resources Characterization: D. Reidel, Dordrecht, The Netherlands.Google Scholar
  3. Armstrong, M., 1984a, Improving the Estimation and Modelling of Variograms, p. 1–20in Geostatistics for Natural Resources Characterization: D. Reidel, Dordrecht, The Netherlands.Google Scholar
  4. Armstrong, M., 1984b, Problems with Universal Kriging: Math. Geol., v. 16, p. 101–108.Google Scholar
  5. Chauvet, P., 1984, Analyse structurale directe d'une FAI-k a une dimension: Sci. Terre, v. 21, p. 125–137.Google Scholar
  6. Chauvet, P., 1985, Les variogramme h et les covariances d'accroissements associées: Internal Report N-952, Centre de Geostatistique, Fontainebleau, 6 p.Google Scholar
  7. Chauvet, P., 1986, Covariances d'accroissements associées aux modeles monomias des FAI-k: Internal Report N-997, Centre de Geostatistique, Fontainebleau, 22 p.Google Scholar
  8. Chiles, J. P., 1976, How to Adapt Kriging to Non-Classical Problems: Three Case Studies; p. 69–90in M. Guarascio, M. David, and C. Huijbrechts (eds.), Advanced Geostatistics in the Mining Industry: D. Reidel, Dordrecht, The Netherlands.Google Scholar
  9. Cliff, A. D.; and Ord, J. K., 1981, Spatial Processes: Models and Applications: Pion, London, 266 p.Google Scholar
  10. Cox, D. R.; and Miller, H. D., 1965, The Theory of Stochastic Processes: Methuen, London, 398 p.Google Scholar
  11. Cressie, N., 1985, When Are Relative Variograms Useful in Geostatistics?: Math. Geol., v. 17, p. 693–702.Google Scholar
  12. Cressie, N., 1986a, In Search of Generalized Covariances for Kriging: Joint Statistics Meeting, Chicago, 21 August, oral presentation.Google Scholar
  13. Cressie, N., 1986b, Kriging Non-Stationary Data: J. Am. Stat. Assoc., v. 81, p. 625–633.Google Scholar
  14. Delfiner, P., 1976, Linear Estimation of Non-Stationary Phenomena, p. 49–68in Advanced Geostatistics in the Mining Industry: M. Guarascio, M. David, and C. Huijbrechts (eds.), D. Reidel, Dordrecht, The Netherlands.Google Scholar
  15. Diamond, P.; and Armstrong, M., 1984, Robustness of Variograms and Conditioning of Kriging Matrices: Math. Geol., v. 16, p. 809–822.Google Scholar
  16. Journel, A.; and Froideveaux, R., 1982, Anisotropic Hole-Effect Modelling: Math. Geol., v. 14, p. 217–240.Google Scholar
  17. Kitanidis, P., 1983, Statistical Estimation of Polynomial Generalized Covariance Functions and Hydrologic Applications: Water Resour. Res., v. 19, pp. 901–921.Google Scholar
  18. Kitanidis, P., 1985, Minimum Variance Unbiased Estimation of Covariances of Regionalized Variables: Math. Geol., v. 17, p. 195–208.Google Scholar
  19. Matheron, G., 1971, The Theory of Regionalized Variables and Its Applications: Center for Geostatistics, Fontainebleau, 212 p.Google Scholar
  20. Matheron, G., 1973, The Intrinsic Random Functions and Their Applications: Adv. Appl. Probability, n. 5, p. 439–468.Google Scholar
  21. Matheron, G., 1978, Estimer et Choisir: Fasc. 7, Centre de Geostatistique, Fontainebleau, 175 p.Google Scholar
  22. Myers, D. E., 1985, On Some Aspects of Robustness: Sci. Terre, n. 21, p. 63–79.Google Scholar
  23. Myers, D. E., 1986, The Robustness and Continuity of Kriging: Joint Statistics Meeting, Chicago, 21 August, oral presentation.Google Scholar
  24. Neuman, S.; and Jacobson, E., 1984, Analysis of NonIntrinsic Spatial Variability by Residual Kriging with Application to Regional Groundwater Levels: Math. Geol., v. 16, p. 499–521.Google Scholar
  25. Olea, R., 1972, Application of Regionalized Variable Theory to Automatic Contouring: Kansas Geological Survey, Lawrence, Kansas, 191 pp.Google Scholar
  26. Philip, G. M.; and Watson, D. F., 1986, Matheronian Geostatistics: Quo Vadis: Math. Geol., v. 18, p. 93–117.Google Scholar
  27. Sabourin, R., 1976, Application of Two Methods for the Interpretation of the Underlying Variogram, p. 101–112in A. Guarascio, M. David, and C. Huijbrechts (eds.), Advanced Geostatistics in the Mining Industry: D. Reidel, Dordrecht, The Netherlands.Google Scholar
  28. Srivastava, Rae Mohan, 1987, A Non-Ergodic Framework for Variograms and Covariance Functions: M.S. Thesis, Applied Earth Sciences, Stanford University, p. 113.Google Scholar
  29. Starks, T. H.; and Fang, J. H., 1982a, On Estimation of the Generalized Covariance Function: Math. Geol., v. 14, p. 57–64.Google Scholar
  30. Starks, T. H.; and Fang, J. H., 1982b, The Effect of Drift on the Experimental Variogram: Math. Geol., v. 14, pp. 309–319.Google Scholar
  31. Von Neumann, J.; Kent, R. H.; Bellision, H. R.; and Hart, B. I., 1941, The Mean Square Successive Difference: Ann. Math. Stat., v. 12, p. 153–162.Google Scholar
  32. Webster, R.; and Burgess, T. M., 1981, Optimal Interpolation and Isarithmic Mapping of Soil Properties. III. Changing Drift and Universal Kriging: J. Soil Sci., v. 31, p. 505–524.Google Scholar

Copyright information

© International Association for Mathematical Geology 1989

Authors and Affiliations

  • D. E. Myers
    • 1
  1. 1.Department of MathematicsUniversity of ArizoniaTucson

Personalised recommendations