Advertisement

Mathematical Geology

, Volume 21, Issue 3, pp 331–345 | Cite as

Comparison between different kriging estimators

  • A. Boufassa
  • M. Armstrong
Articles

Abstract

Six different geostatistical estimators (linear kriging, lognormal kriging, and disjunctive kriging, each with and without a nonbias, i.e., universality condition) were compared using data from a polymetallic deposit in Algeria. The differences between estimators with and without the nonbias condition were far more pronounced than between the different kriging methods. This highlights the importance of choosing an appropriate stationarity model for the data. The criterion concerning kriging weight of the mean in simple kriging, proposed by Remacre (1984, 1987) and Rivoirard (1984) was found to be helpful for determining blocks where the choice of the stationarity hypothesis was critical.

Key words

kriging estimators linear kriging lognormal kriging disjunctive kriging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boufassa, A., 1986, Application de la géostatistique à l'estimation des gisements polymetalliques. Thése de Docteur-Ingenieur: Ecole Nationale Supérieure des Mines de Paris, 150 p.Google Scholar
  2. David, M., 1977, Geostatistical Ore Reserve Estimation: Elsevier Scientific Publishing Co., New York, 364 p.Google Scholar
  3. Guibal, D. and Remacre, A., 1984, Local Estimation of the Recoverable Reserves: Comparing Various Methods with Reality on a Porphyry Copper Deposit,in “Geostatistics for Natural Resources Characterization,” Proceedings NATO ASI Lake Tahoe, G. Verly, M. David, A. G. Journel, and A. Marechal (Eds.), Reidel, Dordrecht, Holland p. 435–448.Google Scholar
  4. Journel, A. and Huijbregts, C., 1978, Mining Geostatistics. Academic Press, London, 600 p.Google Scholar
  5. Marechal, A., 1974, Krigeage Normal and Lognormal N-376, Internal Note: Centre de Géostatistique, Fontainebleau, France, 10 p.Google Scholar
  6. Marechal, A., 1984, Recovery Estimation: A Review of Models and Methods, in “Geostatistics for Natural Resources Characterization,” Proceedings NATO ASI G. Verly, M. David, A. G. Journel, and A. Marechal (Eds.), Reidel, Dordrecht, Holland, p. 385–420.Google Scholar
  7. Matheron, G., 1963, Traité de la Géostatistique Appliquée, Ed Technip, Paris, v. 1, 334 p.Google Scholar
  8. Matheron, G., 1970, The Theory of Regionalized Variables and Its Applications, Centre de Géostatistique, Fontainebleau, France, 211 p.Google Scholar
  9. Remacre, A., 1984, L'Estimation du Recuperable Local—Le Conditionnement Uniforme, Thèse de Docteur-Ingenieur: École Nationale Supérieure des Mines de Paris, 99 p.Google Scholar
  10. Remacre, A., 1987, Conditioning by the Panel Grade for Recovery Estimation of Non-Homogeneous Orebodies, in Geostatistical Case-Studies, G. Matheron and M. Armstrong (Eds.), Reidel, Dordrecht, Holland, p. 135–148.Google Scholar
  11. Rendu, J.-M., 1979a, Kriging, Logarithmic Kriging, and Conditional Expectation: Comparison of Theory with Actual Results, 16th APCOM, Tuscon, Arizona, AIME, p. 199–212.Google Scholar
  12. Rendu, J.-M., 1979b, Normal and Lognormal Kriging, Math. Geol., v. 11, no. 4, p. 407–422.Google Scholar
  13. Rivoirard, J., 1984, Le Comportement des Poids de Krigeage, Thèse de Docteur-Ingenieur: École Nationale Supérieure des Mines de Paris, 72 p.Google Scholar
  14. Rivoirard, J., 1985, Convergence des Developpements en Polynomes d'Hermite: Science de la Terre Informatique, v. 24 p. 129–160.Google Scholar

Copyright information

© International Association for Mathematical Geology 1989

Authors and Affiliations

  • A. Boufassa
    • 1
  • M. Armstrong
    • 1
  1. 1.Centre de Geostatistique, Ecole des Mines de ParisFontainebleauFrance

Personalised recommendations