Advertisement

Soviet Physics Journal

, Volume 31, Issue 11, pp 939–954 | Cite as

Application of the principle of decomposition for the construction of mathematical models of spin-wave devices

  • E. V. Kudinov
  • A. S. Beregov
Article
  • 15 Downloads

Abstract

The fundamentals of the decomposition approach in the mathematical modeling of spin-wave devices are presented. In this approach the device is partitioned into autonomous blocks connected by wave channels. The use of multiwave scattering and transmission matrices as descriptors of the autonomous blocks is examined. The problem of the transmission of a signal carried by the spin waves in a dispersive waveguiding structure is solved as an illustration of the analytical approach to the construction of the descriptor of the autonomous block. The magnetic permeability tensor is obtained for an arbitrarily magnetized disoriented film (111) taking into account the cubic and induced anisotropy; the dispersion relation for spin waves in a regular waveguiding structure with an anisotropic film, completely determining the descriptor of an autonomous block, corresponding to a segment of such a waveguiding structure, is derived.

Keywords

Permeability Anisotropy Mathematical Model Analytical Approach Dispersion Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    V. V. Nikol'skii and T. I. Nikol'skaya, Decomposition Approach to Electrodynamics Problems [in Russian], Nauka, Moscow (1983).Google Scholar
  2. 2.
    V. V. Nikol'skii et al., Computer-Aided Design of Microwave Devices [in Russian], V. V. Nikol'skii (ed.), Radio i Svyaz', Moscow (1982).Google Scholar
  3. 3.
    B. M. Mashkovstev, K. N. Tsibizov, and B. F. Emelin, Theory of Waveguides [in Russian], Nauka, Moscow (1966).Google Scholar
  4. 4.
    Microwave Devices Based on Magnetostatic Waves: Reviews in Electronic Engineering. Series on Microwave Electronics [in Russian], Central Scientific-Research Institute of Electronics, Moscow (1984), No. 8 (1960).Google Scholar
  5. 5.
    L. A. Vainshtein, Usp. Fiz. Nauk,118, No. 2, 340 (1976).Google Scholar
  6. 6.
    E. V. Kudinov and A. S. Beregov, Proceedings of the 6th International Conference on Gyromagnetic Electronics and Electrodynamics, Varna (1982), p. 427.Google Scholar
  7. 7.
    E. V. Kudinov, Functional Microwave Electronics [in Russian], Kiev (1984), pp. 39–46; VINITI No. 1716.Google Scholar
  8. 8.
    A. P. Malozemoff and J. C. De Luca, J. Appl. Phys.,45, No. 10, 4586 (1974).Google Scholar
  9. 9.
    S. Krupicka, Physik der Ferrite und der Verwandten Magnetischen Oxide, Academia, Prague (1973).Google Scholar
  10. 10.
    V. A. Yatsenko, et al., Fiz. Tverd. Tela,21, No. 9, 2656 (1979).Google Scholar
  11. 11.
    H. Niedoba, C. Nourtier, and B. Puchalski, J. Appl. Phys.,54, No. 9, 5322 (1983).Google Scholar
  12. 12.
    A. S. Beregov and E. V. Kudinov, Elektron. Tekh. Ser. Elektron. SVCh, No. 6(390), 41 (1986); No. 6(400), 8 (1987).Google Scholar
  13. 13.
    M. Marysko, Czech. J. Phys. B31, No. 10, 1187 (1981);B33, No. 6, 686 (1983).Google Scholar
  14. 14.
    A. S. Beregov, Izv. Vyssh. Uchebn. Zaved., Radiofiz.,27, No. 10, 9 (1984).Google Scholar
  15. 15.
    S. N. Bajpai, I. Rattan, and N. C. Srivastava, J. Appl. Phys.,50, No. 4, 2887 (1979).Google Scholar
  16. 16.
    A. G. Gurevich, Magnetic Resonance in Ferrites and Antiferromagnets [in Russian], Nauka, Moscow (1973).Google Scholar
  17. 17.
    A. K. Ganguly and D. C. Webb, IEEE Trans. MTT,23, No. 12, 998 (1975);26, No. 6, 444 (1978).Google Scholar
  18. 18.
    B. A. Kalinikos, Izv. Vyssh. Uchebn. Zaved., Radiofiz., No. 8, 42 (1981).Google Scholar
  19. 19.
    G. A. Vugal'ter, Zh. Tekh. Fiz.,53, No. 5, 817 (1983);55, No. 3, 497 (1985).Google Scholar
  20. 20.
    L. B. Gol'dberg, Zh. Tekh. Fiz.,56, No. 10, 1893 (1986).Google Scholar
  21. 21.
    Yu. V. Gulyaev, S. A. Nikitov, and V. P. Plesskii, Fiz. Tverd. Tela,23, No. 4, 1231 (1981).Google Scholar
  22. 22.
    Yu. V. Gulyaev, S. A. Nikitov, and V. P. Plesskii, Zh. Tekh. Fiz.,52, No. 4, 799 (1982).Google Scholar
  23. 23.
    S. V. Gerus and V. D. Kharitonov, Fiz. Met. Metalloved.,58, No. 6, 1069 (1984).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • E. V. Kudinov
    • 1
  • A. S. Beregov
    • 1
  1. 1.Kiev Polytechnical Institute dedicated to the Fiftieth Anniversary of the Great October Socialist RevolutionUSSR

Personalised recommendations