Mathematical Geology

, Volume 25, Issue 2, pp 125–144 | Cite as

Boundary assessment under uncertainty: A case study

  • V. Pawlowsky
  • R. A. Olea
  • J. C. Davis


Estimating certain attributes within a geological body whose exact boundary is not known presents problems because of the lack of information. Estimation may result in values that are inadmissible from a geological point of view, especially with attributes which necessarily must be zero outside the boundary, such as the thickness of the oil column outside a reservoir. A simple but effective way to define the boundary is to use indicator kriging in two steps, the first for the purpose of extrapolating control points outside the body, the second to obtain a weighting function which expresses the uncertainty attached to estimations obtained in the boundary region.

Key words

contouring indicator kriging reservoir characterization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Chauvet, P., 1987, Reflexions sur les Ponderateurs Negatifs du Krigeage: École Nationale Supérieure des Mines de Paris, Fontainebleau/CG, N28/87/G, 48 p.Google Scholar
  2. Ehm, A. E., 1965, Lyons West Field: Kansas Oil and Gas Fields, Vol. 4: Kansas Geological Society, p. 146–156.Google Scholar
  3. Jones, T. A., Hamilton, D. E., and Johnson, C. R., 1986, Contouring Geologic Surfaces with the Computer: Van Nostrand Reinhold Co., New York, 314 p.Google Scholar
  4. Journel, A., 1989, Fundamentals of Geostatistics in Five Lessons: American Geophysical Union, Washington, D.C., 40 p.Google Scholar
  5. Kostov, C., and Dubrule, O., 1986, An Interpolation Method Taking into Account Inequality Constraints: II. Practical Approach: Math. Geol., v. 18, n. 1, p. 53–73.Google Scholar
  6. Sampson, R. J., 1988, SURFACE III User's Manual: Interactive Concepts, Lawrence, Kansas, 277 p.Google Scholar
  7. Soares, A., 1990, Geostatistical Estimation of Orebody Geometry: Math. Geol., v. 22, n. 7, p. 787–802.Google Scholar
  8. Zhu, H., and Journel, A., 1991, Mixture of Populations: Math. Geol., v. 23, n. 4, p. 647–671.Google Scholar

Copyright information

© International Association for Mathematical Geology 1993

Authors and Affiliations

  • V. Pawlowsky
    • 1
  • R. A. Olea
    • 2
  • J. C. Davis
    • 2
  1. 1.Dept. de Matemàtica Aplicada IIIUniversitat Politècnica de CatalunyaBarcelonaSpain
  2. 2.Mathematical Geology Section, Kansas Geological SurveyThe University of KansasLawrence

Personalised recommendations