Soviet Physics Journal

, Volume 22, Issue 5, pp 506–510 | Cite as

Quantum oscillations of shubnikov-de Haas transverse kinetic coefficients

  • V. I. Kadushkin


Shubnikovde Haas oscillations of the transverse magnetoresistance and of the Hall effect are analyzed. The magnetic field dependence of the monotonic components of the transverse magnetoresistance and conductivity are determined. It is found that these dependences do not follow the saturation law usually assumed to hold in a strong magnetic field. It is shown that the reason is the magnetic field dependence of the Hall angle and of the carrier effective mass.


Magnetic Field Effective Mass Haas Hall Effect Field Dependence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    B. M. Askerov, Kinetic Effects in Semiconductors [in Russian], Nauka, Leningrad (1970).Google Scholar
  2. 2.
    H. R. Frederikse and W. R. Holser, Phys. Rev.,108, 1136 (1957).Google Scholar
  3. 3.
    R. I. Sladek, Phys. Rev.,110, 817 (1958).Google Scholar
  4. 4.
    S. S. Shalyt and A. L. Efros, Fiz. Tverd. Tela,4, 1233 (1962).Google Scholar
  5. 5.
    R. A. Isacson and F. Bridges, Solid State Commun.,4, 635 (1966).Google Scholar
  6. 6.
    R. V. Parfen'ev, I. I. Farbshtein, and S. S. Shalyt, Zh. Eksp. Teor. Fiz.,53, 1571 (1967).Google Scholar
  7. 7.
    Yu. A. Bykovskii, V. F. Elesin, V. I. Kadushkin, and E. A. Protasov, Zh. Eksp. Teor. Fiz. Pis'ma Red.,10, 237 (1969).Google Scholar
  8. 8.
    I. M. Tsidil'kovskii, Electrons and Holes in Semiconductors [in Russian], Nauka, Moscow (1972).Google Scholar
  9. 9.
    I. B. Brandt and S. M. Chudinov, Electronic Structure of Metals [in Russian], Izd. MGU (1972).Google Scholar
  10. 10.
    Yu. A. Bykovskii, I. A. Garifullin, V. F. Elesin, V. I. Kadushkin, E. A. Protasov, and A. G. Rodinov, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 2, 96 (1972).Google Scholar
  11. 11.
    V. I. Kadushkin, E. A. Protasov, A. G. Rodionov, and N. A. Toloknov, Fiz. Tekh. Poluprovodn.,8, 1786 (1974).Google Scholar
  12. 12.
    S. S. Shalyt, Fiz. Tverd. Tela,4, 1915 (1962).Google Scholar
  13. 13.
    V. I. Kadushkin, Thesis, MIFI, Moscow (1972).Google Scholar
  14. 14.
    A. I. Akhiezer, V. G. Bar'yakhtar, and S. V. Peletminskii, Zh. Eksp. Teor. Fiz.,48, 204 (1965).Google Scholar
  15. 15.
    V. I. Kadushkin, in: Physics of Semiconductors and Microelectronics [in Russian], No. 2, Ryazan' (1976), p. 142.Google Scholar
  16. 16.
    A. M. Zlobin and P. S. Zyryanov, Zh. Eksp. Teor. Fiz.,58, 952 (1970).Google Scholar
  17. 17.
    V. I. Kadushkin, Fiz. Tekh. Poluprovodn.,9, 1706 (1975).Google Scholar
  18. 18.
    V. I. Kadushkin, Fiz. Tverd. Tela,16, 2903 (1974).Google Scholar
  19. 19.
    O. Madelung, Physics of III–V Compounds, Wiley, New York (1964).Google Scholar
  20. 20.
    Yu. F. Sokolov and V. V. Gastev, Fiz. Tekh. Poluprovodn.,9, 1694 (1975).Google Scholar
  21. 21.
    K. F. Komatsubara, Phys. Rev. Lett.,16, 1044 (1966).Google Scholar
  22. 22.
    N. Kotera, K. F. Komatsubara, and R. Ito, Proc. Ninth Intern. Conf. Physics of Semiconductors, Nauka, Leningrad (1969).Google Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • V. I. Kadushkin
    • 1
  1. 1.Ryazansk Radiotechnical InstituteUSSR

Personalised recommendations