Skip to main content
Log in

Amorphous echo

  • Published:
Soviet Physics Journal Aims and scope

Abstract

Recently, the amorphous state of matter, which can be regarded as an excited state in relation to the crystalline state, has become of interest. This state is formed from the liquid state by certain rapid cooling techniques, and thus manifests a wide spectrum of controllable structural modifications and physical parameters. It may be said that just like a liquid, an amorphous solid consists of a collection of defects with a certain characteristic viscosity. According to [1], the “defect nature” of amorphous solids as compared to crystals manifests itself by at least two methods: a) rapid cooling leads to identical groups of atoms being able to occupy slightly differing energy positions in the amorphous matrix in the absence of any extraneous impurities; b) divergence in potential energy of identical atomic groups is produced by extraneous impurites. In [1] it was established that a type a) system has strong quasispin-phonon interaction, while type b) systems do not affect attenuation of sound, but both produce a contribution to heat capacity at low temperature (10−2−10°K).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. S. Hunklinger, L. Piche, J. C. Lasjaunias, and K. Dransfeld, J. Phys. C: Sol. State Phys.,8, L423 (1975).

    Google Scholar 

  2. P. W. Anderson, C. Varma, and B. Halperin, Phil. Mag.,25, 1 (1972).

    Google Scholar 

  3. K. K. Mon, Y. J. Chabal, and A. J. Sievers, Phys. Rev. Lett.,35, 1352 (1975).

    Google Scholar 

  4. M. Rubinstein and P. C. Taylor, Phys. Rev.,B9, 4258 (1974).

    Google Scholar 

  5. J. Szeftel and H. Alloul, Phys. Rev. Lett.,34, 380 (1975).

    Google Scholar 

  6. S. R. Nagel and J. Tauc, Phys. Rev. Lett.,35, 380 (1975).

    Google Scholar 

  7. N. Heiman and K. Lee, Phys. Rev. Lett.,33, 778 (1974).

    Google Scholar 

  8. M. Dutoit and H. S. Chen, Appl. Phys. Lett.,23, 221 (1973).

    Google Scholar 

  9. R. W. Cochrane, R. Harris, J. O. Ström-Olson, and M. J. Zuckermann, Phys. Rev. Lett.,35, 676 (1975).

    Google Scholar 

  10. U. Kh. Kopvillem, Zh. Eksp. Teor. Fiz.,42, 1333 (1962); Izv. Akad. Nauk SSSR, Ser. Fiz.,37, 2010 (1973).

    Google Scholar 

  11. J. Joffrin and A. Levelut, J. Phys. (Paris),36, 811 (1975).

    Google Scholar 

  12. A. V. Alekseev, U. Kh. Kopvillem, V. R. Nagibarov, and M. I. Pirozhkov, Zh. Eksp. Teor. Fiz.,55, 1852 (1968).

    Google Scholar 

  13. G. M. Ershov and U. Kh. Kopvillem, Radiospectrocopy [in Russian], No. 8, Izd. Perm'. Univ., Perm' (1974), p. 55.

    Google Scholar 

  14. U. Kh. Kopvillem and V. D. Koperanov, VINITI, No. 4437-72 (1972).

  15. K. S. Liang, A. Bienenstock, and C. W. Bates, Phys. Rev.,B10, 1528 (1974).

    Google Scholar 

  16. U. Kh. Kopvillem, V. N. Osipov, B. P. Smolyakov, and R. Z. Sharipov, Usp. Fiz. Nauk,105, 767 (1971).

    Google Scholar 

  17. W. Arnold and S. Hunklinger, Solid State Commun.,17, 883 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 7, pp. 69–75, July, 1977.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kopvillem, U.K. Amorphous echo. Soviet Physics Journal 20, 892–897 (1977). https://doi.org/10.1007/BF00893135

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00893135

Keywords

Navigation