Soviet Physics Journal

, Volume 27, Issue 8, pp 701–705 | Cite as

Cosmological term in the general theory of relativity and localization of the de Sitter and Einstein groups

  • V. N. Tunyak
Physics of Elementary Particles and Field Theory
  • 14 Downloads

Abstract

The theory of a gauge gravitational field with localization of the de Sitter group is formulated. Starting from the tetradic components of the de Sitter universe, a relationship is established between the Riemannian metric and the de Sitter gauge field. It is shown that the general theory of relativity with the cosmological term is the simplest variant of the de Sitter gauge theory of gravitation, which transforms in the limit of an infinite radius of curvature of the de Sitter universe into the Poincaré-invariant GTR without the cosmological term. A theory of a gauge gravitational field with localization of Einstein's group of motions of the uniform static universe (the Einstein group R × S0 (4)) is formulated in an analogous manner.

Keywords

Gauge Theory General Theory Gravitational Field Gauge Field Analogous Manner 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    P. K. Townsend, Phys. Rev. D,15, 795 (1977).Google Scholar
  2. 2.
    A. Inomata and M. Trinkala, Phys. Rev. D,19, 665 (1979).Google Scholar
  3. 3.
    T. Kawai and H. Yoshida, Progr. Theor. Phys.,62, 266 (1979);64, 1596 (1980).Google Scholar
  4. 4.
    Ya. B. Zel'dovlch and I. D. Novikov, Structure and Evolution of the Universe [in Russian], Nauka, Moscow (1975).Google Scholar
  5. 5.
    I. D. Novikov, Evolution of the Universe [In Russian], Nauka, Moscow (1983).Google Scholar
  6. 6.
    V. N. Tunyak, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 10, 100 (1977); No. 2, 101 (1979).Google Scholar
  7. 7.
    Y. M. Cho, Phys. Rev. D,14, 521 (1976).Google Scholar
  8. 8.
    C. Möller, Mat. Fys. Skr. Dan. Vid. Selsk.,35, No. 3, 3 (1966).Google Scholar
  9. 9.
    K. Hayashi, Phys. Lett. B,69, No. 4, 441 (1977).Google Scholar
  10. 10.
    F. Hershey, in: Theory of Groups and Elementary Particles [Russian translation], Mir, Moscow (1967), pp. 25–113.Google Scholar
  11. 11.
    N. K. Sharma, Indian J. Phys.,49, 269 (1975).Google Scholar
  12. 12.
    D. Kramer, Acta Phys. Pol. B,4, 11 (1973).Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • V. N. Tunyak
    • 1
  1. 1.A. M. Gorkii Pedagogical InstituteMinsk

Personalised recommendations