Advertisement

Soviet Physics Journal

, Volume 20, Issue 6, pp 718–721 | Cite as

Simple method of optimizing structural parameters of system of solid spheres for the calculation of liquid radial function

  • V. B. Magalinskii
  • Nel'son Tapia
Article
  • 18 Downloads

Abstract

A thermodynamically consistent representation, in terms of the equation of state, is obtained for the coefficients of the Wertheim-Till direct correlation functions for a system of solid spheres modeling the microstructure of a simple liquid. It is shown that use of the equation of state in Karnahan — Sterling form significantly improves the results for the radial function, giving good agreement with the results of the semiempirical Verlet-Weis approximation for the data of a numerical experiment on a system of solid spheres. Optimization of the sphere diameter using the entropic method proposed earlier is shown to ensure agreement of the nodes of the radial function of the liquid with experimental data. The agreement of the method proposed with other known methods for the calculation and optimization of the radial function of solid spheres is discussed, and its advantages are noted.

Keywords

Microstructure Experimental Data Correlation Function Numerical Experiment Sphere Modeling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    H. N. V. Temperley, J. Rowlinson, and J. Rushbrooke (editors), Physics of Simple Liquids, Part 1, North-Holland, Amsterdam (1968).Google Scholar
  2. 2.
    J. A. Barker and D. Henderson, J. Chem. Phys.,47, 4714 (1967).Google Scholar
  3. 3.
    J. D. Weeks, D. Chandler, and H. C. Anderson, J. Chem. Phys.,54, 5237 (1971).Google Scholar
  4. 4.
    G. A. Mansoori and F. B. Canfield, J. Chem. Phys.,51, 4958 (1969).Google Scholar
  5. 5.
    L. Verlet and J.-J. Weis, Phys. Rev.,A5, 939 (1972).Google Scholar
  6. 6.
    L. L. Lee and D. Levesque, Mol. Phys.,26, 1351 (1973).Google Scholar
  7. 7.
    N. K. Ailawadi, Phys. Rev.,A7, 2200 (1973).Google Scholar
  8. 8.
    V. I. Lysov and E. I. Khar'kov, Ukr. Fiz. Zh.,20, 468 (1975).Google Scholar
  9. 9.
    B. Borstnick and A. Azman, Mol. Phys.,29, 1165 (1975); V. Bongiorno and H. Ted Davis, Phys. Rev.,A12 (1975).Google Scholar
  10. 10.
    N. P. Kovalenko and I. Z. Fisher, Usp. Fiz. Nauk,108, 209 (1972).Google Scholar
  11. 11.
    V. B. Magalinskii and A. Kh. Ktsoev, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 6, 47 (1972); V. B. Magalinskii and A. Kh. Ktsoev, Vestn. MGU, Ser. Fiz., Astron., No. 2, 229 (1972).Google Scholar
  12. 12.
    V. B. Magalinskii, Fiz. Plasmy,2, 499 (1976).Google Scholar
  13. 13.
    V. B. Magalinskii, Papers of the International Conference on Statistical Physics [in Russian], Budapest (1975), p. 239.Google Scholar
  14. 14.
    Kenneth R. Hall, J. Chem. Phys.,57, 2252 (1972).Google Scholar
  15. 15.
    M. de Llano and S. Ramirez, J. Chem. Phys.,62, 4242 (1975).Google Scholar
  16. 16.
    D. Henderson and J. A. Barker, Mol. Phys.,21, 187 (1971).Google Scholar
  17. 17.
    L. Verlet, Phys. Rev.,165, 201 (1968).Google Scholar
  18. 18.
    A. H. Narten, L. Blum, and R. H. Fowler, J. Chem. Phys.,60, 3378 (1974).Google Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • V. B. Magalinskii
    • 1
  • Nel'son Tapia
    • 1
  1. 1.Patrice Lumumba International Friendship UniversityUSSR

Personalised recommendations