Advertisement

Soviet Physics Journal

, Volume 24, Issue 11, pp 1006–1010 | Cite as

Effect of lumped interference on a synchronized generator

  • V. N. Detinko
  • M. N. Merzlyakova
Article

Abstract

Transients in a self-oscillator under biharmonic action are examined on the basis of an auto-parametric model of the synchronization phenomenon. It is shown that an external weak harmonic signal will influence the synchronization mode differently depending on the magnitude and detuning of the synchronizing emf.

Keywords

Harmonic Signal Synchronization Mode Synchronization Phenomenon Weak Harmonic Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    V. N. Detinko, Izv. Vyssh. Uchebn. Zavedenii, Radiofizika,5, 1192 (1962).Google Scholar
  2. 2.
    A. V. Ivanov, Vestn. Mosk. Gos. Univ., Ser. Fiz.-Astron.,18, 30 (1977).Google Scholar
  3. 3.
    V. V. Karpov and I. I. Minakova, Vestn. Mosk. Gos. Univ., Ser. Fiz.-Astron.,17, 356 (1976).Google Scholar
  4. 4.
    S. I. Veksin, V. V. Karpov, and I. I. Minakova, Radiotekh. Elektron.,22, 2575 (1977).Google Scholar
  5. 5.
    V. V. Karpov, Vestn. Mosk. Gos. Univ., Ser. Fiz.-Astron.,19, 24 (1978).Google Scholar
  6. 6.
    L. G. Maloratskii, Radiotekhnika,21, No. 1, 47 (1966).Google Scholar
  7. 7.
    A. V. Ivanov, I. I. Minakova, and A. G. Fedoseev, Vestn. Mosk. Gos. Univ., Ser. Fiz.-Astron.,16, 499 (1975).Google Scholar
  8. 8.
    I. I. Minakova and A. G. Fedoseev, Radiotekh. Elektron.,22, 1652 (1977).Google Scholar
  9. 9.
    V. V. Karpov and M. E. Kvasov, Vestn. Mosk. Gos. Univ., Ser. Fiz.-Astron.,19, 116 (1978).Google Scholar
  10. 10.
    V. N. Detinko, M. N. Merzlyakova, and S. V. Babenko, Izv. Vyssh. Uchebn. Zaved., Fizika, No. 10, 59 (1976).Google Scholar
  11. 11.
    M. N. Merzylakova, Izv. Vyssh. Uchebn. Zaved., Fizika, No. 6, 81 (1975).Google Scholar
  12. 12.
    N. N. Bogolyubov and Yu. A. Mitropol'skii, Asymptotic Methods in the Theory of Nonlinear Oscillations [in Russian], GIFML, Moscow (1958).Google Scholar
  13. 13.
    V. N. Detinko, M. N. Merzlyakova, and S. V. Babenko, Izv. Vyssh. Uchebn. Zaved., Fizika, No. 9, 77 (1976).Google Scholar
  14. 14.
    V. N. Detinko, M. N. Merzlyakcva, and S. V. Babenko, Izv. Vyssh. Uchebn. Zaved., Fizika, No. 9, 83 (1976).Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • V. N. Detinko
    • 1
  • M. N. Merzlyakova
    • 1
  1. 1.V. D. Kuznetsov Siberian Physicotechnical Institute at Tomsk State UniversityUSSR

Personalised recommendations