Advertisement

Soviet Physics Journal

, Volume 33, Issue 8, pp 713–721 | Cite as

Multiparticle perturbation theory and an accurate calculation of parity nonconservation in cesium

  • V. A. Dzyuba
  • O. P. Sushkov
  • V. V. Flambaum
Article
  • 18 Downloads

Abstract

A method of calculating higher-order correlation corrections, using Green's functions and the Feynman diagrammatic technique, is developed. A basis of the single-electron orbitals is computed using the relativistic Hartree-Fock method. The interaction of an atom with an external field is computed by solving the time-dependent Hartree-Fock equations. In the methodology presented, we consider all the second-order correlation corrections and the dominating classes of higher order diagrams: the screening of the Coulomb interaction of electrons, particle-hole interaction and mass operator iterations. The calculation of the energy levels, the intervals of hyperfine structure and the amplitudes of the allowed EI-transitions in Cs shows that the method developed ensures precision at the 0.1–1% level. A calculation of the parity nonconservation of the El-amplitude of the transition 6s–7s in Cs is produced. The result <6s¦Dz¦7s> = −(0.91 ± 0.01)·10−11 i¦e¦aB (−QW/N) is obtained.

Keywords

Cesium Coulomb Interaction Operator Iteration Hyperfine Structure Mass Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    M. A. Bush'ya and L. Pot'e, Usp. Fiz. Nauk,155, No. 2, 299–316 (1988).Google Scholar
  2. 2.
    N. C. Noeker, B. P. Hasterson, C. E. Wieman, and J. Sapirstein, Phys. Rev.,A37, 1395 (1988).Google Scholar
  3. 3.
    M. A. Bouchiat, J. Guena, L. Pottier, and L. Hunter, Phys. Lett.,117B, 358 (1982);134B, 463 (1984); J. Physique,47, 1709 (1986).Google Scholar
  4. 4.
    V. A. Dzuba, V. V. Flambaum, P. G. Silvestrov, and O. P. Sushkov, Phys. Lett.,103A, 265 (1984); J. Phys.,B18, 597–613 (1985).Google Scholar
  5. 5.
    V. A. Dzuba, V. V. Flambaum, P. G. Silvestrov, and O. P. Sushkov, J. Phys.,B20, 3297–3311 (1987); Phys. Scr.,36, 69–70 (1987).Google Scholar
  6. 6.
    V. A. Dzuba, V. V. Flambaum, and O. P. Sushkov, J. Phys.,B16, 715–722 (1983).Google Scholar
  7. 7.
    C. E. Moore, Atomic Energy Levels as Derived from the Analysis of Optical Spectra, Vol. III, National Bureau of Standards, Washington, D.C. (1971).Google Scholar
  8. 8.
    L. I. Schiff, Phys. Rev.,132, No. 5, 2194–2200 (1963).Google Scholar
  9. 9.
    S. T. Epstein and E. Johnson, J. Chem. Phys.,51, 188–189 (1968).Google Scholar
  10. 10.
    V. A. Dzuba, V. V. Flambaum, P. G. Silvestrov, and O. P. Sushkov, Phys. Lett.,A118, No. 4, 177–180 (1986).Google Scholar
  11. 11.
    V. A. Dzuba, V. V. Flambaum, P. G. Silvestrov, and O. P. Sushkov, J. Phys.,B20, 1399–1412 (1986).Google Scholar
  12. 12.
    S. A. Blundell, W. R. Johnson, and J. Sapirstein, Phys. Rev.,A38, 4961 (1988).Google Scholar
  13. 13.
    V. A. Dzuba, V. V. Flambaum, P. G. Silvestrov, and O. P. Sushkov, Phys. Lett.,131, 461–465 (1988).Google Scholar
  14. 14.
    I. Lindgren, J. Lindgren, and A. -M. Martenson, Z. Phys.,A279, 113 (1976).Google Scholar
  15. 15.
    M. Ya. Amusia and N. A. Cherepkov, Case Stud. At. Phys.,5, 47 (1975).Google Scholar
  16. 16.
    E. Arimondo, M. Inguscio, and P. Violino, Rev. Mod. Phys.,49, 31–75 (1977).Google Scholar
  17. 17.
    S. L. Gilbert, R. N. Wattes, and C. E. Wieman, Phys. Rev.,A27, 581 (1983).Google Scholar
  18. 18.
    L. N. Shabanova, Yu. M. Monakov, and A. M. Khlyustalov, Opt. Spektrosk.,47, 3 (1979).Google Scholar
  19. 19.
    R. N. Wattes, S. L. Gilbert, and C. E. Wieman, Phys. Rev.,A27, 2768 (1983).Google Scholar
  20. 20.
    M. A. Bouchiat, J. Guena, and L. Pottier, Phys. Lett.,45, L523 (1984).Google Scholar
  21. 21.
    V. A. Dzuba, V. V. Flambaum, and O. P. Sushkov, Preprint No. 89-110, Nuclear Physics Institute, Siberian Branch of the Academy of Sciences of the USSR, Novosibirsk (1989).Google Scholar
  22. 22.
    C. Bouchiat and C. A. Piketty, Europhys. Lett.,2, 511 (1986).Google Scholar
  23. 23.
    W. R. Johnson, S. A. Blundell, Z. W. Lin, and J. Sapirstein, Phys. Rev.,A37, 1395 (1988).Google Scholar
  24. 24.
    W. J. Marsiano and A. Sirlin, Phys. Rev.,D27, 552 (1983); Amaldi, et al., Phys. Rev.,D36, 1385 (1987).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • V. A. Dzyuba
    • 1
  • O. P. Sushkov
    • 1
  • V. V. Flambaum
    • 1
  1. 1.Nuclear Physics Institute of the Siberian Branch of the Academy of Sciences of the USSRUSSR

Personalised recommendations