Soviet Physics Journal

, Volume 33, Issue 8, pp 641–653 | Cite as

Variational method for excited atomic states

  • V. M. Zelichenko


An analysis is presented of the extremum properties of energy functionals for the excited states of many-electron systems, in particular, atoms, in the case when there exist low-lying states of the same symmetry as the excited state under consideration. Two theorems are proved concerning the relationship between the upper bound on the eigenvalues corresponding to the excited states and the extremum properties of the energy functional determined by variational test functions which depend on parameters. In this context, different variants of the one-electron approximation used in the excited-state calculations are considered: the method of obtaining self-consistent solutions with one-electron functions orthogonal within the configurations (the Hartree-Fock method for configurations); the frozen atomic core approximation for the excited configuration; the method of nonorthogonal orbitals in the excited configuration; and the approximation of the frozen ionic core. Cases are identified and reasons given for the possible “collapse” of the excited state energy level to an unjustifiably low value of the energy.


Excited State Atomic State Extremum Property Ionic Core Energy Functional 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    H. P. Kely, Phys. Rev.,131, 684 (1964).Google Scholar
  2. 2.
    H. P. Kelly, Phys. Rev.,136, B896 (1964).Google Scholar
  3. 3.
    S. Huzinaga and C. Arnau, J. Chem. Phys.,51, 3971 (1969).Google Scholar
  4. 4.
    S. Huzinaga and C. Arnau, Phys. Rev.,A1, 1285 (1970).Google Scholar
  5. 5.
    S. Huzinaga and C. Arnau, J. Chem. Phys.,54, 1948 (1971).Google Scholar
  6. 6.
    E. I. Cheglokov and V. M. Zelichenko, Izv. Vyssh. Uchebn. Zaved. Fiz., No. 3, 65 (1974).Google Scholar
  7. 7.
    V. M. Zelichenko, B. F. Samsonov, and E. I. Cheglokov, Izv. Vyssh. Uchebn. Zaved. Fiz., No. 6, 71 (1980).Google Scholar
  8. 8.
    J. Hendekovic, Chem. Phys. Lett.,90, No. 3, 198 (1982).Google Scholar
  9. 9.
    H. Englisch and R. Englisch, Few-Body Systems,3, 1 (1987).Google Scholar
  10. 10.
    K. T. Chung, Phys. Rev.,A20, 1743 (1979).Google Scholar
  11. 11.
    K. T. Chung, Phys. Rev.,A24, 1350 (1981).Google Scholar
  12. 12.
    K. T. Chung, Phys. Rev.,A25, 1596 (1982).Google Scholar
  13. 13.
    W. L. Luken and J. M. Leonard. Phys. Rev.,A28, 532 (1983).Google Scholar
  14. 14.
    W. L. Luken, J. M. Leonard, and J. C. Culberson, Int. J. Quant. Chem.,17, 401 (1983).Google Scholar
  15. 15.
    M Bylicki, Phys. Rev.,A39, 3316 (1989).Google Scholar
  16. 16.
    V. M. Zelichenko and E. V. Koryukina, Izv. Vyssh. Ucheb. Zaved. Fiz., No. 7, 8 (1988).Google Scholar
  17. 17.
    P. Raeymekers, H. P. Figeys, and P. Geerlings, Mol. Phys.,65, 925 (1988).Google Scholar
  18. 18.
    V. Fock, Z. Phys.,61, 126 (1930).Google Scholar
  19. 19.
    Z. I. Kuplyauskis and A. V. Kuplyauskene, Opt. Spektrosk.,38, 409 (1975).Google Scholar
  20. 20.
    E. R. Davidson, J. Chem. Phys.,42, 4199 (1965).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • V. M. Zelichenko
    • 1
  1. 1.V. D. Kuznetsov Siberian Physicotechnical InstituteState UniversityTomsk

Personalised recommendations