Soviet Physics Journal

, Volume 26, Issue 9, pp 811–813 | Cite as

Generating functional models for a statistical system near a phase transition

  • V. V. Ryazanov
Physics of Liquids and Gases


Starting from an assumed form of the distribution function near the phase transition point, an expression for the generating functional of a statistical system suitable for describing two-phase states of matter is derived. We then obtain formulas for the partition function and correlation functions by the standard procedure.


Phase Transition Distribution Function Correlation Function Standard Procedure Partition Function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    V. V. Ryazanov, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 3, 86 (1977).Google Scholar
  2. 2.
    V. V. Ryazanov, “Modeling of statistical systems,” Ukr. Fiz. Zh.,23, No. Zh.,23, No. 6, 965 (1978); No. 7, 1136 (1978); No. 8, 1289 (1978).Google Scholar
  3. 3.
    V. V. Ryazanov, in: Physics of the Liquid State [in Russian], Vishcha Shkola, No. 8, Kiev (1980), pp. 95–100; No. 8 (1980), pp. 100–105.Google Scholar
  4. 4.
    H. Haken, Synergetics [Russian translation], Mir, Moscow (1980).Google Scholar
  5. 5.
    T. Hill, Statistical Mechanics [Russian translation], Inostr. Lit., Moscow (1960).Google Scholar
  6. 6.
    L. D. Landau and E. M. Lifshits, Statistical Physics [in Russian], Nauka, Moscow (1976).Google Scholar
  7. 7.
    D. N. Zubarev, Nonequilibrium Statistical Thermodynamics [in Russian], Nauka, Moscow (1971).Google Scholar

Copyright information

© Plenum Publishing Corporation 1984

Authors and Affiliations

  • V. V. Ryazanov
    • 1
  1. 1.T. G. Shevchenko State UniversityKiev

Personalised recommendations