Soviet Applied Mechanics

, Volume 26, Issue 8, pp 773–781 | Cite as

Propagation of harmonic waves in an elastic rectangular waveguide

  • E. V. Kastrzhitskaya
  • V. V. Meleshko


Harmonic Wave Rectangular Waveguide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    I. A. Viktorov, Physical Foundations of the Application of Ultrasonic Rayleigh and Lamb Waves in Technology [in Russian], Nauka, Moscow (1966).Google Scholar
  2. 2.
    H. Kolsky, Stress Waves in Solids, Clarendon Press, Oxford (1953); Dover (1963).Google Scholar
  3. 3.
    V. V. Meleshko, “Propagation of high-frequency longitudinal waves in a right-angle waveguide,” Dokl. Akad. Nauk USSR, Ser. A., No. 2, 36–40 (1982).Google Scholar
  4. 4.
    T. R. Meeker and A. H. Meitzler, “Guided wave propagation in elongated cylinders and plates,” in: Physical Acoustics: Principles & Methods, W. Mason (ed.), Vol. 1A, Academic Press, New York (1964).Google Scholar
  5. 5.
    B. F. Mochalov and A. A. Fomin, “Wide-band delay lines based on aluminum nitride films,” Nauchn. Tr. Mosk. Énerg. Inst., No. 111, 82–86 (1986).Google Scholar
  6. 6.
    A. E. Vovk et al., “Normal waves of a solid rectangular waveguide,” Akust. Zh.,26, No. 3, 356–363 (1980).Google Scholar
  7. 7.
    A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series [in Russian], Nauka, Moscow (1981).Google Scholar
  8. 8.
    D. Wade and P. Torvik, “Propagation of elastic waves in homogeneous rods of complex cross section,” Prikl. Mekh.,10, No. 4, 226–231 (1973).Google Scholar
  9. 9.
    P. Khartelendi, “Approximate theory of symmetric oscillations of elastic rods of rectangular or square cross section,” Trans. ASME, J. Appl. Mech.,35, No. 4, 289–299 (1968).Google Scholar
  10. 10.
    “Wideband filter on PAV with decreasing introduced losses,” Nauch. Tr. Vuzov Lit. SSR, Radioélektron,23, No. 3, 39–43 (1987).Google Scholar
  11. 11.
    R. E. Booker and E. H. Sagar, “Velocity dispersion of the lowest-order longitudinal mode in finite rods of circular cross section,” J. Acoust. Soc.Am., 1971,49, No. 5, (part 2), pp. 1491–1499.Google Scholar
  12. 12.
    Y. Cho and K. Yamanouchi, “Theoretical and experimental studies of transverse-horizontal convolver,” IEEE Ultrason. Symp., Williamsburg, Va., Nov. 17–19, 1986, Proc. Vol. 1, New York, (1986), pp. 153–156.Google Scholar
  13. 13.
    B. O. Eichinger, R. Finsterer, and M. Kowatsch, “Convolver-aided synchronization in a direct-sequence spread spectrum communcation system,” IEEE Ultrason. Symp., Williamsburg, Va., Nov. 17–19, 1986, Proc. Vol. 1, New York, (1986), pp. 157–161.Google Scholar
  14. 14.
    W. B. Jraser, “Stress wave propagation in rectangular bars,” Int. J. Solids Struct.5, No. 2, 379–397 (1969).Google Scholar
  15. 15.
    G. J. Kynch, “The fundamental modes of vibration of uniform beams for medium wave lengths,” Brit. J. Appl. Phys.,8, No. 2, pp. 64–73 (1957).Google Scholar
  16. 16.
    K. M. Lakin, G. R. Kline, and R. S. Ketcham, “Thin film resonator based low insertion loss filters,” IEEE Ultrason. Symp., Wiliamsburg, Va., Nov. 17–19, 1986. Proc. Vol. 1, New York (1986), pp. 371–375.Google Scholar
  17. 17.
    R. D. Mindlin and E. A. Fox, “Vibration and waves in elastic bars of rectangular cross section,” Trans. ASME, J. Appl. Mech.,E27, No. 1, 152–158 (1960).Google Scholar
  18. 18.
    T. Miamoto and K. Yasuura, “Numerical analysis on isotropic elastic-waveguides by mode-matching method,” 1977, IEEE Trans. Sonics Ultrasonics,SU-24, No. 6, 359–375, 1977.Google Scholar
  19. 19.
    R. W. Morse, “Dispersion of compressional waves in isotropic rods of rectangular cross section,” J. Acoust. Soc. Am.,20, No. 6, 833–838 (1948).Google Scholar
  20. 20.
    R. W. Morse, “The velocity of compressional waves in rods of rectangular cross section,” J. Acoust. Soc. Am.,22, No. 2, 219–223 (1950).Google Scholar
  21. 21.
    N. J. Nigro, “Steady-state wave propagation in infinite bars of noncircular cross section,” J. Acoust. Soc. Amer,41, No. 5, 1501–1508 (1966).Google Scholar
  22. 22.
    K. Tanaka and Y. Iwahashi, “Dispersion relation of elastic waves in bars of rectangular cross section,” Bull. JSME,20, No. 46, 922–929 (1977).Google Scholar
  23. 23.
    C. Denis Webb, AO, SAW, BAW, and MCW technology for frequency sorting,” IEEE Ultrson. Symp., Williamsburg, Va., Nov. 17–18, 1986. Proc. Vol. 1, New York (1986), pp. 109–118.Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • E. V. Kastrzhitskaya
  • V. V. Meleshko

There are no affiliations available

Personalised recommendations