Advertisement

Soviet Physics Journal

, Volume 25, Issue 3, pp 224–228 | Cite as

Numerical calculation of the dielectric relaxation time distribution function in polar liquids

  • V. A. Valenkevich
  • M. S. Metsik
  • O. I. Gudkov
Article
  • 86 Downloads

Abstract

A numerical method for calculation of the relaxation time distribution function based on the discrete Fourier transform of the dispersion part of the complex dielectric permittivity is developed. The time relaxation distribution function is found for water; its dispersion of relaxation times is narrow. This is explained by the presence of distorted hydrogen bonds (the Pople model).

Keywords

Fourier Hydrogen Bond Fourier Transform Distribution Function Relaxation Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    A. N. Gubkin, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 1, 56 (1979).Google Scholar
  2. 2.
    G. Wyllie, in: Dielectric and Related Molecular Processes, M. Davies (ed.) (Specialist Periodical Reports), Chemical Society, London, Vol. 1 (1972).Google Scholar
  3. 3.
    G. M. Jenkins and D. G. Watts, Spectral Analysis and Its Applications, Holden-Day (1968).Google Scholar
  4. 4.
    I. L. Salefran and A. M. Bottreau, J. Chem. Phys.,67, 1909 (1977).Google Scholar
  5. 5.
    Yu. S. Zav'yalov, B. I. Kvasov, and V. L. Miroshnichenko, Methods of Spline Functions [in Russian], Nauka, Moscow (1980), p. 352.Google Scholar
  6. 6.
    K. Giese, Adv. Mol. Relaxation Processes,5, 363–373 (1973).Google Scholar
  7. 7.
    R. Van Luun and R. Finsi, P. N. I., No. 4, 52–55 (1974).Google Scholar
  8. 8.
    L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing, Wiley (1972).Google Scholar
  9. 9.
    D. Eisenberg and W. Kautzmann, Structure and Properties of Water, Oxford Univ. Press (1969).Google Scholar
  10. 10.
    G. H. Haggis, I. B. Hasted, and T. I. Buchanem, J. Chem. Phys.,20, 1452 (1952).Google Scholar
  11. 11.
    G. Frelich, Theory of Dielectrics [Russian translation], IL, Moscow (1960).Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • V. A. Valenkevich
    • 1
  • M. S. Metsik
    • 1
  • O. I. Gudkov
    • 1
  1. 1.A. A. Zhdanov State UniversityIrkutsk

Personalised recommendations