Soviet Physics Journal

, Volume 22, Issue 6, pp 589–593 | Cite as

Surface-barrier structures on AlxGa1−xSb. II. Band gap dependence of barrier height

  • G. K. Arbuzova
  • A. A. Vilisov
  • V. P. Germogenov
  • N. K. Maksimova


The short-circuit photocurrent is used to find the forbidden gap width Eg and barrier height ΦB of Pd-n-AlxGa1−xSb (0.1 ⩽s x ⩽ 0.7) surface-barrier structure fabricated electrochemically. The barrier height was also determined from the capacitive voltage cutoff and the current-voltage characteristics. For metal-n-AlxGa1−xSb contacts the linear approximation to ΦB(Eg) is given by ΦB = 0.64Eg + 0.16 eV. In some samples the photoresponse spectrum has a hump, indicating the effects of deep levels.


Linear Approximation Barrier Height Deep Level Capacitive Voltage Voltage Cutoff 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    S. M. Bedair, Phys. Semicond. Proc. 13th Int. Conf., Rome (1976), p. 804.Google Scholar
  2. 2.
    G. K. Arbuzova, A. A. Vilisov, V. P. Germogenov, N. K. Maksimova, and N. G. Filonov, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 6, 21 (1979).Google Scholar
  3. 3.
    C. A. Mead and W. G. Spitzer, Phys. Rev. Lett.,11, 358 (1963).Google Scholar
  4. 4.
    W. G. Spitzer and C. A. Mead, Phys. Rev.,133, A872 (1964).Google Scholar
  5. 5.
    H. C. Casey and M. B. Panish, J. Appl. Phys.,40, 4910 (1969).Google Scholar
  6. 6.
    Y. Nannichi, K. Nishida, and K. Mizusawa, Jpn. J. Appl. Phys.,9, 332 (1970).Google Scholar
  7. 7.
    Yu. A. Gol'dberg, T. Yu. Rafiev, B. V. Tsarenkov, and Yu. P. Yakovlev, Fiz. Tekh. Poluprovodn.,6, 462 (1972).Google Scholar
  8. 8.
    J. S. Escher, L. W. James, R. Sankaran, G. A. Antypas, R. L. Moon, and R. L. Bell, J. Vac. Sci. Technol.,13, 874 (1976).Google Scholar
  9. 9.
    S. M. Bedair, J. Appl. Phys.,47, 4145 (1976).Google Scholar
  10. 10.
    C. Ance, J. Robin, A. Nguyen Van Mau, and G. Bougnot, Solid-State Commun.,15, 1295 (1974).Google Scholar
  11. 11.
    H. Mathieu, D. Auvergne, P. Merle, and K. C. Rustagi, Phys. Rev. B: Solid State,12, 5846 (1975).Google Scholar
  12. 12.
    Yu. F. Biryulin, S. P. Bul', T. T. Dedegkaev, I. I. Kryukov, T. A. Polyanskaya, and Yu. V. Shmartsev, Fiz. Tekh. Poluprovodn.,11, 1555 (1977).Google Scholar
  13. 13.
    N. N. Sirota and A. I. Lukomskii, Fiz. Tekh. Poluprovodn.,7, 196 (1973).Google Scholar
  14. 14.
    A. G. Milnes and D. L. Feucht, Heterojunctions and Metal Semiconductor Junctions, Academic Press (1972).Google Scholar
  15. 15.
    M. Averous, G. Bougnot, J. Calas, and J. Chevrier, Phys. Status Solidi,37, 807 (1970).Google Scholar
  16. 16.
    R. J. Stirn and W. M. Becker, Phys. Rev.,141, 621 (1966).Google Scholar
  17. 17.
    R. Y. Sun and W. M. Becker, Phys. Rev. B,10, 3436 (1974).Google Scholar
  18. 18.
    A. M. Goodman, J. Appl. Phys.,34, 329 (1963).Google Scholar
  19. 19.
    L. P. Krukovskaya, L. S. Berman, A. Ya. Vyl', and A. Ya. Shik, Fiz. Tekh. Poluprovodn.,11, 1893 (1977).Google Scholar
  20. 20.
    K. Vogel and A. Engel, Krist. Tech.,9, 67 (1974).Google Scholar
  21. 21.
    C. A. Mead and W. G. Spitzer, Phys. Rev.,134, A713 (1964).Google Scholar
  22. 22.
    A. Berkeliev, Yu. A. Gol'dberg, and D. Melebaev, Izv. Akad. Nauk TSSR, Ser. Fiz. Tekh. Khim. Geol. Nauk, No. 6, 44 (1975).Google Scholar
  23. 23.
    J. O. McCaldin, T. C. McGill, and C. A. Mead, J. Vac. Sci. Technol.,13, 802 (1976).Google Scholar
  24. 24.
    K. Kajiyama, Y. Mizushima, and S. Sakata, Appl. Phys. Lett.,23, 458 (1973).Google Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • G. K. Arbuzova
    • 1
  • A. A. Vilisov
    • 1
  • V. P. Germogenov
    • 1
  • N. K. Maksimova
    • 1
  1. 1.V. D. Kuznetsov Siberian Physicotechnical InstituteTomsk State UniversityUSSR

Personalised recommendations