Skip to main content
Log in

Concentrated spin glass state in solid solutions of antiferromagnetic garnets

  • Published:
Soviet Physics Journal Aims and scope

Conclusion

Experimental data obtained in the present work provide evidence for the fact that in magnetic dielectrics with competing exchange interactions, and in particular, in compounds with the garnet structure, various disordered phases of the spin glass type may be realized. The peculiarity of these phases lies in the fact that they occur in magnetically concentrated systems, and their nature is not related to any of the mechanism of spin glass state noted in the introduction. For this reason, physical properties of solid solutions of antiferromagnetic garnets, in which spin glass state is observed, apparently, differ from the corresponding characteristics of “traditional” spin glasses. In particular, our measurements have shown that the character of the maximum in χ′ dependence in MnFeG does not depend on whether the sample was cooled in a magnetic field below To or in the absence of the field. We were also not successful in observing any signs of relaxation behavior in MnFeG magnetization when the field was turned on and off. In CaFeCrG, there is no frequency dependence of the maximum of χ′(T).

On the other hand, the microscopic mechanism of formation of a spin glass state in the garnets studied is undoubtfully related to frustrations which occur because of the peculiar topology of exchange interactions in the garnet structure. In this sense, MnFeG, CaFeCrG, and MnFeCrG may be characterized as topological spin glasses occurring in solid solutions of those antiferromagnetic garnets which have different propagation vectors of magnetic structures.

In conclusion, we note that results that we have obtained point to the existence in solid solutions of magnetic dielectrics with antiferromagnetic exchange interactions of compounds with qualitatively new, peculiar magnetic properties, and from this point of view it is of great interest to study them further.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. J. Villain, Z. Phys.,B33, 31 (1979).

    Google Scholar 

  2. A. N. Christensen, T. Johansson, and B. J. Lebech, J. Phys.,C9, 260 (1976).

    Google Scholar 

  3. H. Dachs and W. Kurtz, J. Magn. Magnetic Materials,4, 262 (1977).

    Google Scholar 

  4. K. Katsumata, M. Kobayashi, T. Sato, and Y. Miyako, Phys. Rev.,B19, No. 5, 2700 (1979).

    Google Scholar 

  5. K. Katsumata, T. Nire and M. Tanimoto, Phys. Ref.,B25, No. 1, 428 (1982).

    Google Scholar 

  6. F. Fiorani, S. Viticoli, J. L. Dormann, J. L. Tholense, J. Hamann, and A. P. Murani, J. Phys.,C16, 3175 (1983).

    Google Scholar 

  7. L. De Seze, J. Phys.,C10, 23 (1977).

    Google Scholar 

  8. E. F. Shender, Zh. Eksp. Teor. Fiz.,75, No. 1, 352 (1978).

    Google Scholar 

  9. M. Escorne, A. Mayger, R. Triboulet, and J. L. Tholense, Physica,B107, 309 (1981).

    Google Scholar 

  10. F. Sholl and K. Binder, Z. Phys.,B39, No. 3, 239 (1980).

    Google Scholar 

  11. K. P. Belov and V. I. Sokolov, Usp. Fiz. Nauk,121, No. 2, 285 (1977).

    Google Scholar 

  12. T. V. Valyanskaya and V. I. Sokolov, Zh. Eksp. Teor. Fiz.,75, No. 1, 325 (1978).

    Google Scholar 

  13. I. V. Golosovskii and V. P. Plakhtii, Preprint of the B. P. Kostantinov Leningrad Institute of Nuclear Physics of the Academy of Sciences of the USSR, No. 374 (1977).

  14. I. V. Golosovskii, V. P. Plakhtii, et al., Fiz. Tverd. Tela,19, No. 4, 1181 (1977).

    Google Scholar 

  15. W. Prandl, Solid State Commun.,11, No. 5, 645 (1972).

    Google Scholar 

  16. V. I. Sokolov and O. I. Shevaleevskii, Zh. Eksp. Teor. Fiz.,72, No. 6, 2367 (1977).

    Google Scholar 

  17. W. Prandl, Solid State Commun.,11, No. 6, 529 (1972).

    Google Scholar 

  18. R. Plumier, Solid State Commun.,10, No. 1, 5 (1972).

    Google Scholar 

  19. S. J. Smart, Effective Field Theories of Magnetism, Saunders (1966).

  20. R. M. Bozorth and S. Geller, J. Phys. Chem. Solids,11, No. 3/4, 263 (1959).

    Google Scholar 

  21. L. E. Wenger and P. H. Keesom, Phys. Rev.,B13, No. 9, 4053 (1976).

    Google Scholar 

  22. R. G. Bowers and M. E. Wolf, Phys. Rev.,177, No. 2, 917 (1969).

    Google Scholar 

  23. V. A. Povitskii, F. J. Litterst, and E. F. Macarov, J. Physique,41, Suppl. C1, No. 1, 183 (1980).

    Google Scholar 

  24. O. P. Smirnov, V. P. Plakhtii, and I. V. Golosovskii, Fiz. Tverd. Tela,26, No. 2, 551 (1984).

    Google Scholar 

  25. V. P. Plakhtii, I. V. Golosovskii, et al., Pis'ma Zh. Eksp. Teor. Fiz.,16, No. 5, 276 (1972).

    Google Scholar 

  26. K. P. Belov, Ferrites in Strong Magnetic Fields [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  27. S. A. Bogoslovskii, T. V. Valyanskaya, et al., Fiz. Tverd. Tela,25, No. 2, 328 (1983).

    Google Scholar 

  28. K. M. Kherd, Usp. Fiz. Nauk,142, No. 2, 331 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Izvestiya Vysshikh Zavedenii, Fizika, No. 10, pp. 91–104, October, 1984.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sokolov, V.I. Concentrated spin glass state in solid solutions of antiferromagnetic garnets. Soviet Physics Journal 27, 881–893 (1984). https://doi.org/10.1007/BF00891496

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00891496

Keywords

Navigation