Skip to main content
Log in

Time-series analysis in cyclic stratigraphy: An example from the Cretaceous of the Southern Alps, Italy

  • Articles
  • Published:
Mathematical Geology Aims and scope Submit manuscript

Abstract

The importance of time-series analysis in cyclic stratigraphy is evaluated by comparing three different methods (adaptive multiple taper spectral analysis, auto-/cross-correlation analysis, cova functions) applied to stratigraphic time series from the Early Cretaceous Cismon section in northern Italy. Carbonate content and magnetic susceptibility vary in a quasi-cyclic fashion in this pelagic limestone section and are almost perfectly negatively correlated. The spectral technique requires a high degree of preprocessing of the original data (interpolation and resampling at a regular interval, filtering, inversion) which introduces smoothing and rounding errors. The statistical correlation analysis also requires evenly and (for cross-correlation) correspondingly spaced series. The geostatistical cova functions (a generalization of the cross-variogram) prove to be the most versatile and robust of the methods compared. Cova functions can be calculated from unevenly and noncor-respondingly spaced time series without any preprocessing. This method also retains relatively more of the signal if noise and extreme outliers obscure the picture. The periodicities detected in the Cismon time series fall in the range of Milankovitch cycles. Cycle periods of 45 cm and 80 cm likely correspond to dominant precession and obliquity cycles. Due to the inaccuracy of the Cretaceous time scale periods cannot be matched exactly yet, but cycle ratios are close to expected ratios so that there is great potential for future cyclostratigraphic work to contribute to a substantial improvement of the geologic time scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarez, W., Colacicchi, R., and Montanari, A., 1985, Synsedimentary Slides and Bedding Formation in Apennine Pelagic Limestones: J. Sedimentary Petrol., v. 55, n. 5, p. 720–734.

    Google Scholar 

  • Arthur, M. A., and Dean, W. E., 1991. A Holistic Geochemical Approach to Cyclomania: Examples from Cretaceous Pelagic Limestone Sequences,in G. Einsele, W. Ricken, and A. Seilacher (eds.),Cycles and Events in Stratigraphy: Springer-Verlag, Berlin, p. 126–166.

    Google Scholar 

  • Arthur, M. A., and Garrison, R. E. 1986, Cyclicity in the Milankovitch Band Through Geologic Time: An Introduction: Paleoceanography, v. 1, n. 4, p. 369–372.

    Google Scholar 

  • Arthur, M. A., Dean, W. E., Bottjer, D., and Scholle, P. A., 1984, Rhythmic Bedding in Mesozoic-Cenozoic Pelagic Carbonate Sequences: The Primary and Diagenetic Origin of Milankovitch-like Cycles,in A. Berger, J. Imbrie, G. Kukla, and B. Saltzman (eds.),Milankovitch and Climate. Understanding the Response to Astronomical Forcing: NATO Advanced Science Institutes Series C, v. 126, p. 1: D. Reidel Publishing Company, Dordrecht, p. 191–222.

    Google Scholar 

  • Beerbower, J. R., 1964, Cyclothems and Cyclic Depositional Mechanisms in Alluvial Plain Sedimentation,in D. F. Merriam (ed.),Symposium on Cyclic Sedimentation: Kansas Geol. Survey Bulletin 169, v. I, p. 31–42.

    Google Scholar 

  • Berger, A. L., 1977, Support for the Astronomical Theory of Climatic Change: Nature, v. 269, n. 5623, p. 44–45.

    Google Scholar 

  • Berger, A. L., 1978, Théorie Astronomique des Paléoclimats, une Nouvelle Approche: Bull. Soc. Belge de Géol., v. 87, n. 1–2, p. 9–25.

    Google Scholar 

  • Berger, A., Imbrie, J., Hays, J., Kukla, G., and Saltzman, B., (eds.), 1984,Milankovitch and Climate. Understanding the Response to Astronomical Forcing: NATO Advanced Science Institutes Series C, v. 126, p. 1 and 2: D. Reidel Publishing Company, Dordrecht, 895 p.

    Google Scholar 

  • Bernoulli, D., Caron, C., Homewood, P., Kälin, O., and van Stuijvenberg, J., 1979, Evolution of Continental Margins in the Alps,in St. Mueller, and W. F. Oberholzer (eds.)International Geodynamics Project. Final Report of Switzerland, July 1979: Schweizerische Mineralogisch-Petrographische Mitteilungen, v. 59, n. 1/2, p. II, p. 165–170.

    Google Scholar 

  • Bond, G. C., Kominz, M. A., and Beavan, J., 1991, Evidence for Orbital Forcing of Middle Cambrian Peritidal Cycles: Wah Wah Range South-Central Utah,in E. K. Franseen, W. L. Watney, C. G. St. C. Kendall, and W. Ross (eds.),Sedimentary Modeling: Computer Simulations and Methods for Improved Parameter Definition: Kansas Geol. Survey Bull. 233, p. 293–317.

    Google Scholar 

  • Bosellini, A., and Winterer, E. L., 1975, Pelagic Limestone and Radiolarite of the Tethyan Mesozoic: A Genetic Model: Geology, v. 3, n. 5, p. 279–282.

    Google Scholar 

  • Bottjer, D. J., Arthur, M. A., Dean, W. E., Hattin, D. A., and Savrda, C. E., 1986, Rhythmic Bedding Produced in Cretaceous Pelagic Carbonate Environments: Sensitive Recorders of Climatic Cycles: Paleoceanography, v. 1, n. 4, p. 467–481.

    Google Scholar 

  • Box, G. E. P., and Jenkins, G. M., 1970,Time Series Analysis Forecasting and Control: Holden-Day, Oakland, California, 553 p.

    Google Scholar 

  • Bracewell, R. N., 1978,The Fourier Transform and Its Applications (2nd Ed.): McGraw-Hill Book Co., New York, 444 p.

    Google Scholar 

  • Bradley, W. H., 1930, The Varves and Climate of the Green River Epoch: U.S. Geol. Survey Prof. Paper 158 p. 87–110.

  • Bralower, T. J., 1986,Part A. An Integrated Mesozoic Biochronology and Magnetochronology. Part B. Studies of Cretaceous Black Shales: Unpublished doctoral dissertation, University of California San Diego, 425 p.

  • Channell, J. E. T., Bralower, T. J., and Grandesso, P., 1987, Biostratigraphic Correlation of Mesozoic Polarity Chrons CM1 to CM23 at Capriolo and Xausa (Southern Alps, Italy): Earth Planetary Sci. Lett., v. 85, n. 1/3, p. 203–221.

    Google Scholar 

  • Channell, J. E. T., Lowrie, W., and Medizza, F., 1979, Middle and Early Cretaceous Magnetic Stratigraphy from the Cismon Section, Northern Italy: Earth Planetary Sci. Lett., v. 42, n. 2, p. 153–166.

    Google Scholar 

  • Cirilli, S., Márton, P., and Vigli, L., 1984, Implications of a Combined Biostratigraphic and Palaeomagnetic Study of the Umbrian Maiolica Formation: Earth Planetary Sci. Lett., v. 69, n. 1, p. 203–214.

    Google Scholar 

  • Davis, J. C., 1986,Statistics and Data Analysis in Geology (2nd Ed.): John Wiley & Sons, New York, 646 p.

    Google Scholar 

  • Diggle, P. J., 1990,Time Series: A Biostatistical Introduction Clarendon Press, Oxford, 257 p.

    Google Scholar 

  • Doglioni, C., 1992, The Venetian Alps Thrust Belt,in K. R. McClay (ed.),Thrust Tectonics: Chapman & Hall, London, p. 319–324.

    Google Scholar 

  • Eicher, D. L., and Diner, R., 1991, Environmental Factors Controlling Cretaceous Limestone-Marlstone Rhythms,in G. Einsele, W. Ricken, and A. Seilacher (eds.),Cycles and Events in Stratigraphy: Springer-Verlag, Berlin, p. 79–93.

    Google Scholar 

  • Einsele, G., and Seilacher, A., (eds.), 1982,Cyclic and Event Stratification: Springer-Verlag, Berlin, 536 p.

    Google Scholar 

  • Einsele, G., Ricken, W., and Seilacher, A., (eds.), 1991,Cycles and Events in Stratigraphy: Springer-Verlag, Berlin, 955 p.

    Google Scholar 

  • Fischer, A. G., 1964, The Lofer Cyclothems of the Alpine Triassic,in D. F. Merriam (ed.),Symposium on Cyclic Sedimentation: Kansas Geol. Survey Bull. 169, v. I, p. 107–149.

    Google Scholar 

  • Fischer, A. G., 1980, Gilbert—Bedding Rhythms and Geochronology,in E. L. Yochelson (ed.),The Scientific Ideas of G. K. Gilbert. An Assessment on the Occasion of the Centennial of the United States Geological Survey (1879–1979): Geol. Soc. America Spec. Paper 183, p. 93–104.

  • Fischer, A. G., 1986, Climatic Rhythms Recorded in Strata: Ann. Rev. Earth Planetary Sci., v. 14, p. 351–376.

    Google Scholar 

  • Fischer, A. G., and Bottjer, D. J., (eds.), 1991,Orbital Forcing and Sedimentary Sequences: J. Sedimentary Petrol., v. 61, n. 7, p. 1063–1252.

  • Fischer, A. G., and Schwarzacher, W., 1984, Cretaceous Bedding Rhythms Under Orbital Control?in A. Berger, J. Imbrie, G. Kukla, and B. Saltzman (eds.),Milankovitch and Climate. Understanding the Response to Astronomical Forcing NATO Advanced Science Institutes Series C, v. 126, p. 1: D. Reidel Publishing Company, Dordrecht, p. 163–175.

    Google Scholar 

  • Fischer, A. G., de Boer, P. L., and Premoli Silva, I., 1990, Cyclostratigraphy,in R. N. Ginsburg and B. Beaudoin (eds.),Cretaceous Resources, Events and Rhythms. Background and Plans for Research NATO Advanced Science Institutes Series C, v. 304: Kluwer Academic Publishers, Dordrecht, p. 139–172.

    Google Scholar 

  • Gaetani, M., 1975, Jurassic Stratigraphy of the Southern Alps: A Review,in C. H. Squyres (ed.),Geology of Italy (Vol. 1): The Earth Sciences Society of the Libyan Arab Republic, Tripoli, p. 377–402.

    Google Scholar 

  • Gilbert, G. K., 1895, Sedimentary Measurement of Cretaceous Time: J. Geol., v. 3, n. 2, p. 121–127.

    Google Scholar 

  • Ginsburg, R. N., 1971, Landward Movement of Carbonate Mud: New Model for Regressive Cycles in Carbonates (abst.): Am. Assoc. Petroleum Geologists Bull., v. 55, n. 2, p. 340.

    Google Scholar 

  • Hallam, A., 1964, Origin of the Limestone-Shale Rhythm in the Blue Lias of England: A Composite Theory: J. Geol., v. 72, n. 2, p. 157–169.

    Google Scholar 

  • Hallam, A., 1986, Origin of Minor Limestone-Shale Cycles: Climatically Induced or Diagenetic?: Geology, v. 14, n. 7, p. 609–612.

    Google Scholar 

  • Hallam, A., Hancock, J. M., LaBrecque, J. L., Lowrie, W., and Channell, J. E. T., 1985, Jurassic to Paleogene: Part I Jurassic and Cretaceous Geochronology and Jurassic to Paleogene Magnetostratigraphy,in N. J. Snelling (ed.),The Chronology of the Geological Record Geological Society (London) Memoir, n. 10, Blackwell Scientific Publ., Oxford, p. 118–140.

    Google Scholar 

  • Haq, B. U., Hardenbol, J., and Vail, P. R., 1988, Mesozoic and Cenozoic Chronostratigraphy and Cycles of Sea-Level Change,in C. K. Wilgus, B. S. Hastings, C. G. St. C. Kendall, H. W. Posamentier, C. A. Ross, and J. C. van Wagoner (eds.),Sea-Level Changes: An Integrated Approach: Society of Economic Paleontologists and Mineralogists Spec. Publ. 42, p. 71–108.

  • Harland, W. B., Cox, A. V., Llewellyn, P. G., Pickton, C. A. G., Smith, A. G., and Walters, R., 1982,A Geologic Time Scale: Cambridge University Press, Cambridge, 131 p.

    Google Scholar 

  • Harland, W. B., Armstrong, R. L., Cox, A. V., Craig, L. E., Smith, A. G., and Smith, D. G., 1990,A Geologic Time Scale 1989: Cambridge University Press, Cambridge, 263 p.

    Google Scholar 

  • Harris, F. J., 1978, On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform: Proc. Inst. Electrical Electronics Eng., v. 66, n. 1, p. 51–83.

    Google Scholar 

  • Hays, J. D., Imbrie, J., and Shackleton, N. J., 1976, Variations in the Earth's Orbit: Pacemaker of the Ice Ages: Science, v. 194, n. 4270, p. 1121–1132.

    Google Scholar 

  • Herbert, T. D., 1992, Paleomagnetic Calibration of Milankovitch Cyclicity in Lower Cretaceous Sediments: Earth Planetary Sci. Lett., v. 112, n. 1/4, p. 15–28.

    Google Scholar 

  • Herbert, T. D., and Fischer, A. G., 1986, Milankovitch Climatic Origin of Mid-Cretaceous Black Shale Rhythms in Central Italy: Nature, v. 321, n. 6072, p. 739–743.

    Google Scholar 

  • Herbert, T. D., Stallard, R. F., and Fischer, A. G., 1986, Anoxic Events, Productivity Rhythms, and the Orbital Signature in a Mid-Cretaceous Deep-Sea Sequence from Central Italy: Paleoceanography, v. 1, n. 4, p. 495–506.

    Google Scholar 

  • Herzfeld, U. C., 1990, Cova Functions for Unevenly and Noncorrespondingly Spaced Processes: Computers & Geosciences, v. 16, n. 5, p. 733–749.

    Google Scholar 

  • Hinnov, L. A., and Goldhammer, R. K., 1991, Spectral Analysis of the Middle Triassic Latemar Limestone,in A. G. Fischer and D. J. Bottjer (eds.),Orbital Forcing and Sedimentary Sequences: J. Sedimentary Petrol., v. 61, n. 7, p. 1173–1193.

    Google Scholar 

  • Hinte, J. E., van, 1976, A Cretaceous Time Scale: Am. Assoc. Petroleum Geologists Bull., v. 60, n. 4, p. 498–516.

    Google Scholar 

  • House, M. R., 1985, A New Approach to an Absolute Timescale from Measurements of Orbital Cycles and Sedimentary Microrhythms: Nature, v. 315, n. 6022, p. 721–725.

    Google Scholar 

  • Houten, F. B., van, 1962, Cyclic Sedimentation and the Origin of Analcime-Rich Upper Triassic Lockatong Formation, West-Central New Jersey and Adjacent Pennsylvania: Am. J. Sci., v. 260, n. 8, p. 561–576.

    Google Scholar 

  • Imbrie, J., Hays, J. D., Martinson, D. G., McIntyre, A., Mix, A. C., Morley, J. J., Pisias, N. G., Prell, W. L., and Shackleton, N. J., 1984, The Orbital Theory of Pleistocene Climate: Support from a Revised Chronology of the Marine ∂18O Record,in A. Berger, J. Imbrie, G. Kukla, and B. Saltzman (eds.),Milankovitch and Climate. Understanding the Response to Astronomical Forcing NATO Advanced Science Institutes Series C, v. 126, p. 1: D. Reidel Publishing Company, Dordrecht, p. 269–305.

    Google Scholar 

  • Jenkins, G. M., and Watts, D. G., 1968,Spectral Analysis and Its Applications Holden-Day, San Francisco, 525 p.

    Google Scholar 

  • Journel, A. G., and Huijbregts, C. J., 1989,Mining Geostatistics (2nd Ed.): Academic Press, London, 600 p.

    Google Scholar 

  • Kate, W. G., ten, and Sprenger, A., 1989, On the Periodicity in a Calcilutite-Marl Succession (SE Spain): Cretaceous Res., v. 10, n. 1, p. 1–31.

    Google Scholar 

  • Kay, S. M., 1988,Modern Spectral Estimation: Theory and Application: Prentice Hall, Englewood Cliffs, New Jersey, 543 p.

    Google Scholar 

  • Kay, S. M., and Marple, Jr., S. L., 1981, Spectrum Analysis—A Modern Perspective: Proc. Inst. Electrical Electronics Eng., v. 69, n. 11, p. 1380–1419.

    Google Scholar 

  • Kendall, M., and Ord, J. K., 1990,Time Series (3rd Ed.): Edward Arnold, Sevenoaks, Kent, 296 p.

    Google Scholar 

  • Kent, D. V., and Gradstein, F. M., 1985, A Cretaceous and Jurassic Geochronology: Geol. Soc. America Bull., v. 96, n. 11, p. 1419–1427.

    Google Scholar 

  • Lowrie, W., 1982, A Revised Magnetic Polarity Timescale for the Cretaceous and Cainozoic,in S. K. Runcorn, K. M. Creer, and J. A. Jacobs (eds.),The Earth's Core: Its Structure, Evolution and Magnetic Field: Phil. Trans. Roy. Soc. London, Series A, v. 306, n. 1492, p. 129–136.

    Google Scholar 

  • Lowrie, W., and Heller, F., 1982, Magnetic Properties of Marine Limestones: Rev. Geophys. Space Phys., v. 20, n. 2, p. 171–192.

    Google Scholar 

  • Lowrie, W., and Ogg, J. G., 1986, A Magnetic Polarity Time Scale for the Early Cretaceous and Late Jurassic: Earth Planetary Sci. Lett., v. 76, n. 3/4, p. 341–349.

    Google Scholar 

  • Mayer, H., 1992, Cyclic Carbonate Fluctuations in the Early Cretaceous Tethys—Paleoceanographic Considerations,in M. Sarnthein, J. Thiede, and R. Zahn (eds.),Fourth International Conference on Paleoceanography, 21–25 September 1992, Kiel/Germany, Program & Abstracts: GEOMAR Report n. 15, and Berichte—Reports Geol.—Paläont. Inst. Univ. Kiel, n. 57, p. 192.

  • Merriam, D. F. (ed.), 1964, Symposium on Cyclic Sedimentation: Kansas Geol. Survey Bull. 169, v. I–II, 636 p.

  • Ogg, J. G., and Steiner, M. B., 1984, Jurassic Magnetic Polarity Time Scale: Current Status and Compilation,in O. Michelsen and A. Zeiss (eds.),International Symposium on Jurassic Stratigraphy, Erlangen, 1–8 September 1984 v. 3: Geological Survey of Denmark, Copenhagen, p. 777–794.

    Google Scholar 

  • Olsen, P. E., 1986, A 40-Million-Year Lake Record of Early Mesozoic Orbital Climatic Forcing: Science, v. 234, n. 4778, p. 842–848.

    Google Scholar 

  • Osleger, D., 1991, Subtidal Carbonate Cycles: Implications for Allocyclic vs. Autocyclic Controls: Geology, v. 19, n. 9, p. 917–920.

    Google Scholar 

  • Park, J., and Herbert, T. D., 1987, Hunting for Paleoclimatic Periodicities in a Geologic Time Series With an Uncertain Time Scale: J. Geophys. Res., v. 92, n. B13, p. 14027–14040.

    Google Scholar 

  • Park, J., Lindberg, C. R., and Vernon III, F. L., 1987, Multitaper Spectral Analysis of High-Frequency Seismograms: J. Geophys. Res., v. 92, n. B12, p. 12675–12684.

    Google Scholar 

  • Piaz, G. V. dal, Raumer, J. von, Sassi, F. P., Zanettin, B., and Zanferrari, A., 1975, Geological Outline of the Italian Alps,in C. H. Squyres (ed.),Geology of Italy, v. 1: The Earth Sciences Society of the Libyan Arab Republic, Tripoli, p. 299–375.

    Google Scholar 

  • Premoli Silva, I. Ripepe, M., and Tornaghi, M. E., 1989, Planktonic Foraminiferal Distribution Record Productivity Cycles: Evidence from the Aptian-Albian Piobbico Core (Central Italy): Terra Nova, v. 1, n. 5, p. 443–448.

    Google Scholar 

  • Priestley, M. B., 1981,Spectral Analysis and Time Series (Vols. 1 and 2): Academic Press, London, 890 p.

    Google Scholar 

  • Read, J. F., Grotzinger, J. P., Bova, J. A., and Koerschner, W. F., 1986, Models for Generation of Carbonate Cycles: Geology, v. 14, n. 2, p. 107–110.

    Google Scholar 

  • Ricken, W., 1986,Diagenetic Bedding. A Model for Marl-Limestone ALternations: Lecture Notes in Earth Sciences, n. 6: Springer-Verlag, Berlin, 210 p.

    Google Scholar 

  • Schwarzacher, W., 1947, Über die sedimentäre Rhythmik des Dachsteinkalkes von Lofer: Verhandlungen der Geologischen Bundesanstalt (Wien), v. 1947, n. 10–12, p. 175–188.

    Google Scholar 

  • Schwarzacher, W., 1954, Die Großrhythmik des Dachsteinkalkes von Lofer: Tschermaks mineralogische und petrographische Mitteilunge, Series 3, v. 4, n. 1–4, p. 44–54.

    Google Scholar 

  • Schwarzacher, W., 1975,Sedimentation Models and Quantitative Stratigraphy: Developments in Sedimentology, n. 19: Elsevier, Amsterdam, 382 p.

    Google Scholar 

  • Schwarzacher, W., 1987a, The Analysis and Interpretation of Stratification Cycles: Paleoceanography, v. 2, n. 1, p. 79–95.

    Google Scholar 

  • Schwarzacher, W., 1987b, Astronomical Cycles for Measuring Geological Time: Modern Geol., v. 11, n. 4, p. 375–381.

    Google Scholar 

  • Schwarzacher, W., 1989, Milankovitch Cycles and the Measurement of Time: Terra Nova, v. 1, n. 5, p. 405–408.

    Google Scholar 

  • Schwarzacher, W., 1991, Milankovitch Cycles and the Measurement of Time,in G. Einsele, W. Ricken, and A. Seilacher (eds.),Cycles and Events in Stratigraphy: Springer-Verlag, Berlin, p. 855–863.

    Google Scholar 

  • Schwarzacher, W., and Fischer, A. G., 1982, Limestone-Shale Bedding and Perturbations of the Earth's Orbit,in G. Einsele and A. Seilacher (eds.),Cyclic and Event Stratification: Springer-Verlag, Berlin, p. 72–95.

    Google Scholar 

  • Smith, D. G., 1989, Milankovitch Cyclicity and the Stratigraphic Record: Terra Nova, v, 1, n. 5, p. 402–404.

    Google Scholar 

  • Sujkowski, Z. L., 1958, Diagenesis: Am. Assoc. Petroleum Geologists Bull., v. 42, n. 11, p. 2692–2717.

    Google Scholar 

  • Thomson, D. J., 1982, Spectrum Estimation and Harmonic Analysis: Proc. Inst. Electrical Electronics Eng., v. 70, n. 9, p. 1055–1096.

    Google Scholar 

  • Weedon, G. P., 1986, Hemipelagic Shelf Sedimentation and Climatic Cycles: The Basal Jurassic (Blue Lias) of South Britain: Earth Planetary Sci. Lett., v. 76, n. 3/4, p. 321–335.

    Google Scholar 

  • Weedon, G. P., 1989, The Detection and Illustration of Regular Sedimentary Cycles Using Walsh Power Spectra and Filtering, with Examples from the Lias of Switzerland: J. Geol. Soc. (London), v. 146, n. 1, p. 133–144.

    Google Scholar 

  • Weedon, G. P., 1991, The Spectral Analysis of Stratigraphic Time Series,in G. Einsele, W. Ricken, and A. Seilacher (eds.),Cycles and Events in Stratigraphy: Springer-Verlag, Berlin, p. 840–854.

    Google Scholar 

  • Weissert, H., 1981, Depositional Processes in an Ancient Pelagic Environment: The Lower Cretaceous Maiolica of the Southern Alps: Ecolgae Geologicae Helvetiae, v. 74, n. 2, p. 339–352.

    Google Scholar 

  • Weissert, H. J., McKenzie, J. A., and Channell, J. E. T., 1985, Natural Variations in the Carbon Cycle During the Early Cretaceous,in E. T. Sundquist and W. S. Broecker (eds.),The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present: Geophysical Monograph, n. 32, American Geophysical Union, Washington, D.C., p. 531–545.

    Google Scholar 

  • Wigley, T. M. L., 1976, Spectral Analysis and the Astronomical Theory of Climatic Change: Nature, v. 264, n. 5587, p. 629–631.

    Google Scholar 

  • Winterer, E. L., and Bosellini, A., 1981, Subsidence and Sedimentation on Jurassic Passive Continental Margin, Southern Alps, Italy: Am. Assoc. Petroleum Geologists Bull., v. 65, n. 3, p. 394–421.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mayer, H. Time-series analysis in cyclic stratigraphy: An example from the Cretaceous of the Southern Alps, Italy. Math Geol 25, 975–1001 (1993). https://doi.org/10.1007/BF00891055

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00891055

Key words

Navigation