Skip to main content
Log in

Creep of lead alloys. I

  • Published:
Soviet Physics Journal Aims and scope

Abstract

The effect of traces of Sb, Te and Cu on the creep of lead under various stresses (σ) atroom temperature is considered. The greatest sensitivity to the value of σ is exhibited by Pb itself, and the least by the Pb-Sb-Te-Cu alloy, in which the creep rate is low over a wide stress range. Tests on alloys treated in such a way as to produce the same grain size show that the addition of Sb, Te, and Cu reduces the creep rate of lead. The greatest influence is exerted by the addition of copper and the least by the addition of antimony. For all the materials studied the creep rate falls with increasing grain size. This influence is the greater, the lower the value of σ. For alloys annealed at the same temperature and possessing a grain size smaller than that of lead, in the case of small values of σ the beneficial effect of alloying is partly masked by the grain-size effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. G. A. Hiscock, J. Electrical,167, No. 5, 278 (1961).

    Google Scholar 

  2. E. N. de C. Andrade, in: Creep and Recovery [Russian translation], Metallurgizdat (1961).

  3. A. Sally, Creep of Metals and Heat-Resistant Alloys [Russian translation], Oborongiz (1953).

  4. L. M. T. Hopkins and C. J. Thwaites, J. Inst. Met.,82, 181 (1953–1954).

    Google Scholar 

  5. J. N. Greenwood and H. K. Worner, J. Inst. Met.,64, 135 (1939).

    Google Scholar 

  6. A. Latin, J. Inst. Met.,81, 529 (1952–1953).

    Google Scholar 

  7. G. B. Schanklin and J. F. Eckel, Electrical Engineering,73, No. 6, 523 (1954).

    Google Scholar 

  8. W. Hofmann and H. Malotki, Zs. Metallkunde,55, No. 3, 135 (1964).

    Google Scholar 

  9. J. N. Greenwood and J. H. Cole, Metallurgia, No. 39, 121 (1949).

    Google Scholar 

  10. G. R. Gohn, S. M. Arnold, and G. M. Bouton, Proc. Amer. Soc. Test. Mater.,46, 990 (1946).

    Google Scholar 

  11. V. A. Pereslegin, Za Kabel. Tekh., No. 3, 15 (1937).

    Google Scholar 

  12. E. N. de C. Andrade, Nature,162, 410 (1948).

    Google Scholar 

  13. G. B. Schanklin and J. F. Eckel, Trans. AIEE,74, 294 (1954).

    Google Scholar 

  14. M. A. Bol'shanina and T. F. Elsukova, Zavod. Lab., No. 3, 315 (1964).

    Google Scholar 

  15. E. R. Parker and G. Washburn, in: Creep and Recovery [Russian translation], Metallurgizdat (1961).

  16. V. M. Rozenberg, Creep of Metals [in Russian], Metallurgiya (1967).

  17. E. R. Parker, Trans. ASM,50, 52 (1958).

    Google Scholar 

  18. M. A. Bol'shanina and T. F. Elsukova, Izv. VUZ. Fiz., No. 12, 7 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, Vol. 16, No. 9, pp. 77–81, September, 1973.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elsukova, T.F., Bol'shanina, M.A., Makogon, M.B. et al. Creep of lead alloys. I. Soviet Physics Journal 16, 1254–1257 (1973). https://doi.org/10.1007/BF00890889

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00890889

Keywords

Navigation