Soviet Applied Mechanics

, Volume 22, Issue 6, pp 538–544 | Cite as

Steady oscillations and dissipative heating of viscoelastic bodies with a periodic load

  • I. K. Senchenkov
  • V. G. Karnaukhov
  • V. I. Kozlov
  • O. P. Chervinko


Periodic Load Viscoelastic Body Dissipative Heating Steady Oscillation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    I. A. Birger, “Some general methods of solving problems of plasticity theory,” Prikl. Mat. Mekh.,15, No. 6, 765–770 (1951).Google Scholar
  2. 2.
    S. S. Volkov, Yu. N. Orlov, and B. Ya. Chernyak, Ultrasonic Welding of Plastics [in Russian], Khimiya, Moscow (1974).Google Scholar
  3. 3.
    A. A. Il'yushin and B. E. Pobedrya, Principles of the Mathematical Theory of Thermoviscoelasticity [in Russian], Nauka, Moscow (1970).Google Scholar
  4. 4.
    V. G. Karnaukhov, Coupled Problems of Thermoviscoelasticity [in Russian], Naukova Dumka, Kiev (1982).Google Scholar
  5. 5.
    V. I. Kozlov and V. G. Karnaukhov, “Finite-element method of investigating the thermomechanical behavior of viscoelastic solids of revolution with cyclic loading,” Prikl. Mekh.,19, No. 11, 40–45 (1983).Google Scholar
  6. 6.
    A. I. Lukomskaya and V. F. Evstratov, Fundamentals of the Prediction of the Mechanical Behavior of Raw and Cured Rubber [in Russian], Khimiya, Moscow (1975).Google Scholar
  7. 7.
    S. I. Meshkov, Viscoelastic Properties of Metals [in Russian], Metallurgiya, Moscow (1974).Google Scholar
  8. 8.
    V. V. Moskvitin, Cyclic Loading of Structural Elements [in Russian], Nauka, Moscow (1981).Google Scholar
  9. 9.
    V. A. Pal'mov, Oscillations of Elastoplastic Bodies [in Russian], Metallurgiya, Moscow (1976).Google Scholar
  10. 10.
    I. K. Senchenkov, “Approximate formulation of coupled problems of nonlinear thermoviscoelasticity with harmonic perturbations,” Prikl. Mekh.,21, No. 2, 91–99 (1985).Google Scholar
  11. 11.
    L. K. Senchenkov, “Longitudinal oscillations and heating of a rod of nonlinear viscoelastic material,” Prikl. Mekh.,21, No. 9, 79–85 (1985).Google Scholar
  12. 12.
    I. K. Senchenkov and O. P. Chervinko, “Oscillation and heating of viscoelastic rectangular prisms and a finite cylinder with kinematic excitation,” Prikl. Mekh.,20, No. 10, 45–52 (1984).Google Scholar
  13. 13.
    L. A. Faitel'son, “Simple shear periodic deformation of materials in the viscous-fluid state,” Mekh. Polim., No. 1, 182–183 (1969).Google Scholar
  14. 14.
    A. N. Filatov and L. V. Sharova, Integral Inequalities and the Theory of Nonlinear Oscillations [in Russian], Nauka, Moscow (1976).Google Scholar
  15. 15.
    A. R. Payne, “Hysteresis in rubber vulkanizates,” J. Polym. Sci., No. 48, 169–196 (1974).Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • I. K. Senchenkov
  • V. G. Karnaukhov
  • V. I. Kozlov
  • O. P. Chervinko

There are no affiliations available

Personalised recommendations