Skip to main content
Log in

Fractal and geostatistical methods for modeling of a fracture network

  • Articles
  • Published:
Mathematical Geology Aims and scope Submit manuscript

Abstract

The modeling of fracture networks is useful for fluid flow and rock mechanics studies. About 6600 fracture traces were recorded on drifts of a uranium mine in a granite massif. The traces have an extension of 0.20–20 m. The network was studied by fractal and by geostatistical methods but can be considered neither as a fractal with a constant dimension nor a set of purely randomly located fractures. Two kinds of generalization of conventional models can still provide more flexibility for the characterization of the network: (a) a nonscaling fractal model with variable similarity dimension (for a 2-D network of traces, the dimension varying from 2 for the 10-m scale to 1 for the centimeter scale, (b) a parent-daughter model with a regionalized density; the geostatistical study allows a 3-D model to be established where: fractures are assumed to be discs; fractures are grouped in clusters or swarms; and fracturation density is regionalized (with two ranges at about 30 and 300 m). The fractal model is easy to fit and to simulate along a line, but 2-D and 3-D simulations are more difficult. The geostatistical model is more complex, but easy to simulate, even in 3-D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersson, J., Shapiro, A. M., and Bear, J., 1984, A Stochastic Model of a Fractured Rock Conditioned by Measured Information: Water Resour. Res., v. 20, no. 1, p. 79–88.

    Google Scholar 

  • Baecher, G. B. and Lanney, N. A., 1978, Trace Length Biases in Joint Surveys,in Proceedings of the 19th U.S. Symposium on Rock Mechanics: A.I.M.E., p. 56–65.

  • Baecher, G. B., Lanney, N. A., and Einstein, H. H., 1977, Statistical Description of Rock Properties and Sampling,in Proceedings of the 18th U.S. Symposium on Rock Mechanics: A.I.M.E., p. 5C1-1–5C1-8.

  • Barton, C. C. and Larsen, E., 1985, Fractal Geometry of Two-Dimensional Fracture Networks at Yucca Mountain, Southwestern Nevada,in Proceedings of the International Symposium on Fundamentals of Rock Joints, Bjorkliden, p. 77–84.

  • Bertrand, L.; Beucher, H.; Creutin, D.; Feuga, B.; Landry, J.; and Thiéry, D. 1982, Essai de Détermination de la Distribution Régionale du Tenseur de Perméabilité du “Milieu Poreux Équivalent,”in Les Milieux Discontinus en Hydrogéologie, Documents du BRGM, No. 45: Bureau de Recherches Géologiques et Minières, Orléans, p. 97–120.

    Google Scholar 

  • Blanchin, R., 1984, Etude Statistique et Géostatistique de la Fracturation de la Mine de Fanay-Augères, Report CCE/CEA/BRGM, no. 84, RDM 074 IM.

  • Blès, J. L.; Dutartre, P.; Feybesse, J. L.; Gros, Y.; and Martin, P. 1983, Etude Structurale de la Fracturation du Granite de Saint-Sylvestre, Report CCE/CEA/BRGM, no. 83 SGN 426 GEO.

  • Chilès, J. P., 1988, Three-Dimensional Geometric Modelling of a Fracture Network,in Proceedings of DOE/AECL'87 Conference, San Francisco, California.

  • Conrad, F. and Jacquin, C., 1973, Représentation d'un Réseau Bidimensionnel de Fractures par un Modèle Probabiliste. Application au Calcul des Grandeurs Géométriques des Blocs Matriciels: Revue de l'I.F.P., v. XXVIII, no. 6, Nov.−Dec., p. 843–890.

    Google Scholar 

  • Coster, M. and Chermant, J. L., 1983, Recent Developments in Quantitative Fractography: Int. Met. Rev., v. 28, 46 p.

  • Cruden, D. M., 1977, Describing the Size of Discontinuities: Int. J. Rock Mech. Min. Sci. Geomech. Abstr., v. 14, p. 133–137.

    Google Scholar 

  • Curl, R. L., 1986, Fractal Dimensions and the Geometries of Caves: Math. Geol., v. 18, no. 8, p. 765–783.

    Google Scholar 

  • Delaney, P. T.; Pollard, D. D.; Ziony, J. I.; and McKee, E. H., 1986, Field Relations Between Dykes and Joints: Emplacement Processes and Paleostress Analysis: J. Geophys. Res., v. 91, no. B5, p. 4920–4938.

    Google Scholar 

  • Deverly, F., 1984, Echantillonnage et Géostatistique, Thesis: E.N.S. des Mines de Paris, 152 p.

  • Feuga, B., 1983, Caractérisation du Milieu Poreux Équivalent à un Milieu Fracturé par Essais à l'Eau in Situ,in Proceedings of the International Symposium Reconnaissance des Sols et des Roches par Essais en Place, Paris.

  • Feuga, B., 1986, Hydrogeologic Modeling of Fractured Rock: Jornadas Sobre Modelos Matematicos Aplicables al Almacenamiento de Residuos Radioactivos, Madrid, Escuela Superior de Engenieros de Minas de Madrid.

    Google Scholar 

  • Gentier, S., 1986, Morphologie et Comportement Hydromécanique d'une Fracture Naturelle dans un Granite sous Contrainte Normale, Thesis: Université d'Orléans, 2 vol., 637 p.

  • Hestir, K.; Chilès, J. P.; Long, J.; and Billaux, D., 1986, Three Dimensional Modeling of Fractures in Rocks; from Data to a Regionalized Parent-Daughter Model. American Geophysical Union Meeting. San Francisco, California. (To appear in AGU Geophysical Monography volume on unsaturated fractured rock, 1987.)

  • Hudson, J. and Priest, S. D., 1979, Discontinuities and Rock Mass Geometry: Mt. J. Rock Mech. Min. Sci. Geomech. Abstr., v. 16, p. 339–362.

    Google Scholar 

  • La Pointe, P. R., 1980, Analysis of the Spatial Variation in Rock Mass Properties Through Geostatistics,in Proceedings of the 21th U.S. Symposium on Rock Mechanics, Rolla, p. 570–580.

  • Laslett, G. M., 1982, Censoring and Edge Effect in Areal and Line Transect Sampling of Rock Joint Traces: Math. Geol., v. 14, no. 2, p. 125–140.

    Google Scholar 

  • Loiseau, P., 1987, Etude Structurale et Géostatistique des gneiss de la Région du Cézallier: Modélisation Tridimensionnelle de Réseaux de Fractures; Application à l'Écoulement des Fluides, Thesis, Université d'Orléans, 200 p.

  • Long, J. C. S., 1986, Modeling of Fluid Flow and Transport in Fracture Networks, Jornadas Sobre Modelos Matematicos Aplicables al Almacenamiento de Residuos Radioactivos, Madrid, Escuela Superior de Engenieros de Minas de Madrid.

    Google Scholar 

  • Mandelbrot, B. B., 1983, The Fractal Geometry of Nature, 2nd ed.: Freeman, New York, 468 p.

    Google Scholar 

  • Mandelbrot, B. B., Passoja, D., and Paullay, A., 1984, Fractal Character of Fracture Surfaces of Metals: Nature, v. 308, p. 721–722.

    Google Scholar 

  • Mantoglou, A., 1987, Digital Simulation of Multivariate Two- and Three-Dimensional Stochastic Processes with a Spectral Turning Bands Method: Math. Geol., v. 19, no. 2, p. 129–149.

    Google Scholar 

  • Massoud, H., 1987, Modélisation de la Petite Fracturation par les Techniques de la Géostatistique, Thesis, E.N.S. des Mines de Paris, 173 p.

  • Matheron, G., 1973, The Intrinsic Random Functions and Their Applications, Adv. Appl. Prob., No. 5, p. 439–468.

  • Miller, S. M., 1979, Geostatistical Analysis for Evaluating Spatial Dependence of Fracture Set Characteristics,in Proceedings of 16th APCOM Symposium: SME-AIME, New York, p. 537–545.

    Google Scholar 

  • Pahl, P. J., 1981, Estimating the Mean Length of Discontinuity Traces: Int. J. Rock Mech. Min. Sci. Geomech. Abstr., v. 18, p. 221–228.

    Google Scholar 

  • Shaw, H. R. and Gartner, A. E., 1986, On the Graphical Interpretation of Paleoseismic Data: U.S. Geological Survey Open-file Report 86–394, 92 p.

  • Snow, D. T., 1970, The Frequency and Apertures of Fractures in Rock: Int. J. Rock Mech. Min. Sci., v. 7, p. 23–40.

    Google Scholar 

  • Thomas, A., 1987, Structure Fractale de l'Architecture de Champs de Fractures en Milieu Rocheux: Compt. Rend. Acad. Sci. Paris, v. 304, Sér. II, no. 4, p. 181–186.

    Google Scholar 

  • Turcotte, D. L., 1986, A Fractal Model for Crustal Deformation: Tectonophysics, v. 132, p. 261–269.

    Google Scholar 

  • Warburton, P. M., 1980, A Stereological Interpretation of Joint Trace Data: Int. J. Rock Mech. Min. Sci. Geomech. Abstr., v. 17, p. 181–190.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chilès, J.P. Fractal and geostatistical methods for modeling of a fracture network. Math Geol 20, 631–654 (1988). https://doi.org/10.1007/BF00890581

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00890581

Key words

Navigation