Advertisement

Soviet Applied Mechanics

, Volume 20, Issue 10, pp 881–898 | Cite as

Solution of problems in the theory of shells by numerical-analysis methods

  • Ya. M. Grigorenko
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    A. A. Abramov, “Transfer of boundary conditions for systems of ordinary differential equations (variant of the factorization method),” Zh. Vychisl. Mat., No. 3, No. 3, 542–545 (1961).Google Scholar
  2. 2.
    Ya. M. Grigorenko (editor), Algorithms and Programs for Solving Problems in the Mechanics of a Deformable Solid [in Russian], Naukova Dumka, Kiev (1976).Google Scholar
  3. 3.
    A. V. Aleksandrov, B. Ya. Lashchenikov, N. N. Shaposhnikov, and V. A. Smirnov, Methods of Calculating Rod Systems, Plates, and Shells by the Use of Computers [in Russian], Stroiizdat, Moscow (1976), Part 2.Google Scholar
  4. 4.
    N. A. Aluymyaé, “A variational formula for the investigation of thin-walled elastic shells in the post-critical stage,” Prikl. Mat. Mekh.,14, No. 2, 197–202 (1950).Google Scholar
  5. 5.
    S. A. Ambartsumyan, Theory of Anisotropic Shells [in Russian], Nauka, Moscow (1961).Google Scholar
  6. 6.
    R. E. Bellman and R. E. Kalaba, Quasilinearization and Nonlinear Boundary-Value Problems [Russian translation], Mir, Moscow (1968).Google Scholar
  7. 7.
    O. M. Belotserkovskii and P. I. Chushkin, “A numerical method for integral relations,” Zh. Vychisl. Mat. Fiz., No., No. 5, 731–739 (1962).Google Scholar
  8. 8.
    I. S. Berezin and N. P. Zhidkov, Methods of Calculation [in Russian], Fizmatgiz, Moscow (1962), Vol. 2.Google Scholar
  9. 9.
    V. L. Biderman, “Use of the method of factorization for the numerical solution of problems in structural mechanics,” Inzh. Zh. Mekh. Tverd. Tela, No. 5, 62–66 (1967).Google Scholar
  10. 10.
    V. L. Biderman, “Some computational methods for solving problems in structural mechanics which have been reduced to ordinary differential equations,” Raschety Prochnost', No. 17, 8–36 (1976).Google Scholar
  11. 11.
    V. L. Biderman, Mechanics of Thin-Walled Structures [in Russian], Mashinostroenie, Moscow (1977).Google Scholar
  12. 12.
    I. A. Birger, Some Mathematical Methods for the Solution of Engineering Problems [in Russian], Oborongiz, Moscow (1956).Google Scholar
  13. 13.
    I. A. Birger, Circular Plates and Shells of Revolution [in Russian], Oborongiz, Moscow (1968).Google Scholar
  14. 14.
    Yu. A. Birkgran and A. S. Vol'mir, “Investigation of large deflections of a rectangular plate by means of digital computers,” Izv. Akad. Nauk SSSR, Mekhanika i Mashinostroenie, No. 2, 100–106 (1959).Google Scholar
  15. 15.
    V. V. Bolotin and Yu. N. Novichkov, Mechanics of Multilayer Structures [in Russian], Mashinostroenie, Moscow (1980).Google Scholar
  16. 16.
    V. N. Bulgakov, Statics of Toroidal Shells [in Russian], Izd. Akad. Nauk Ukr. SSR (1962).Google Scholar
  17. 17.
    N. V. Valishvili, Computer Methods for Calculating Shells of Revolution [in Russian], Mashinostroenie, Moscow (1976).Google Scholar
  18. 18.
    V. S. Vladimirov, “An approximate solution of a boundary-value problem for a secondorder differential equation,” Prikl. Mat. Mekh.,19, No. 3, 315–324 (1955).Google Scholar
  19. 19.
    V. Z. Vlasov, General Theory of Shells and Its Applications in Technology. Selected Studies [in Russian], Izd. Akad. Nauk SSSR, Moscow (1962), Vol. 1.Google Scholar
  20. 20.
    A. S. Vol'mir, Flexible Plates and Shells [in Russian], Gostekhizdat, Moscow (1956).Google Scholar
  21. 21.
    I. I. Vorovich and V. F. Zipalova, “On the solution of nonlinear boundary-value problems in the theory of elasticity by the method of passage to a Cauchy problem,” Prikl. Mat. Mekh.,29, No. 2, 121–128 (1965).Google Scholar
  22. 22.
    I. I. Vorovich and N. I. Minakova, “Stability of a nonshallow spherical cupola,” ibid.,32, No. 2, 332–338 (1968).Google Scholar
  23. 23.
    I. I. Vorovich and N. I. Minakova, “Investigation of the stability of a nonshallow spherical cupola in high approximations,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 2, 121–128 (1969).Google Scholar
  24. 24.
    I. I. Vorovich and N. I. Minakova, “The problem of stability and numerical methods in the theory of spherical shells,” in: Achievements of Science and Technology. Mechanics of Deformable Solids [in Russian], VINITI Akad. Nauk SSSR (1973), Vol. 7, pp. 5–86.Google Scholar
  25. 25.
    A. G. Gabril'yants and V. I. Feodos'ev, “Axially symmetric forms of equilibrium of an elastic spherical shells acted upon by a uniformly distributed pressure,” Prikl. Mat. Mekh.,25, No. 6, 1091–1101 (1961).Google Scholar
  26. 26.
    V. V. Gaidaichuk, E. A. Gotsulyak, and V. I. Gulyaev, “Branching of the solutions of the nonlinear equations of toroidal shells acted upon by an external pressure,” Prikl. Mekh.,14, No. 9, 38–45 (1978).Google Scholar
  27. 27.
    K. Z. Galimov, “Application of the variational principle of possible changes in the stressed state in the nonlinear theory of shallow shells,” Izv. Vyssh. Uchebn. Zaved., Mat., No. 1, 3–11 (1958).Google Scholar
  28. 28.
    I. M. Gel'fand and O. V. Lokutsievskii, “The ‘factorization’ method for solving difference equations,” in: S. K. Godunov and V. S. Ryaben'kii, Introduction to the Theory of Difference Schemes [in Russian], Fizmatgiz, Moscow (1962), pp. 283–309.Google Scholar
  29. 29.
    A. O. Gel'fond, The Calculus of Finite Differences [in Russian], Fizmatgiz, Moscow (1959).Google Scholar
  30. 30.
    S. K. Godunov, “The numerical solution of boundary-value problems for systems of linear ordinary differential equations,” Usp. Mat. Nauk,16, No. 3, 171–174 (1961).Google Scholar
  31. 31.
    S. K. Godunov, and V. S. Ryaben'kii, Introduction to the Theory of Difference Schemes [in Russian], Fizmatgiz, Moscow (1962).Google Scholar
  32. 32.
    A. L. Gol'denveizer, Theory of Elastic Thin Shells [in Russian], Gostekhizdat, Moscow (1953).Google Scholar
  33. 33.
    E. A. Gotsulyak, V. N. Ermishev, and N. T. Zhadrasinov, “Convergence of the method of curvilinear networks in shell-theory problems,” Soprot. Mater. Theor. Sooruzh., No. 39, 80–84 (1981).Google Scholar
  34. 34.
    E. A. Gotsulyak and K. Pemsing, “Taking account of rigid displacements in the solution of problems in shell-theory by the method of finite differences,” in: Numerical Methods for the Solution of Problems in Structural Mechanics [in Russian], Kiev (1978), pp. 93–98.Google Scholar
  35. 35.
    É. I. Grigolyuk and V. I. Mamai, “Methods of reducing a nonlinear boundary-value problem to a Cauchy problem,” in: Applied Problems in Strength and Plasticity. Methods for the Solution of Problems in Elasticity and Plasticity [in Russian], Izd. Gor'k. Un-ta, Gorky (1979), pp. 3–49.Google Scholar
  36. 36.
    É. I. Grigolyuk, V. I. Mamai, and A. N. Frolov, “Investigation of the stability of nonshallow spherical shells in the case of finite displacements on the basis of various equations in the theory of shells,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 5, 154–165 (1972).Google Scholar
  37. 37.
    E. I. Grigolyuk, and V. I. Shalashilin, “Some forms of the method of parametric continuation in nonlinear problems in the theory of elasticity,” Zh. Prikl. Mekh. Tekh. Fiz., No. 5, 158–162 (1980).Google Scholar
  38. 38.
    Ya. M. Grigorenko, “Computer solution of problems concerning the stressed state of conical shells of variable rigidity,” in: Computers in Structural Mechanics: Proceedings of the First All-Union Conference on the Use of Computers in Structural Mechanics, Leningrad, 1963 [in Russian], Gosstroiizdat, Moscow-Leningrad (1966), pp. 535–543.Google Scholar
  39. 39.
    Ya. M. Grigorenko, “The use of numerical methods for calculating machine elements,” Dinam. Prochn. Mashin., No. 5, 11–17 (1967).Google Scholar
  40. 40.
    Ya. M. Grigorenko, Isotropic and Anisotropic Laminated Shells of Revolution of Variable Rigidity [in Russian], Naukova Dumka, Kiev (1973).Google Scholar
  41. 41.
    Y. M. Grigorenko, E. I. Bespalova, A. T. Vasilenko, et al., Numerical Solution of Boundary-Value Problems in the Statics of Orthotropic Laminated Shells of Revolution by Means of M-220 Computers [in Russian], Naukova Dumka, Kiev (1971).Google Scholar
  42. 42.
    Ya. M. Grigorenko and A. T. Vasilenko, “Numerical solution by computers of boundaryvalue problems concerning the stressed state of shells of revolution,” in: Abstracts of Reports of the Fifth All-Union Conference on the Theory of Plates and Shells [in Russian], Nauka, Moscow (1965), pp. 18–19.Google Scholar
  43. 43.
    Ya. M. Grigorenko and A. T. Vasilenko, Theory of Shells of Variable Rigidity [in Russian], Naukova Dumka, Kiev (1981). (Methods of Calculating Shells Vol. 4).Google Scholar
  44. 44.
    Ya. M. Grigorenko, A. T. Vasilenko, E. I. Bespalova, et al., Numerical Solution of Boundary-Value Problems in the Statics of Orthotropic Shells with Variable Parameters [in Russian], Naukova Dumka, Kiev (1975).Google Scholar
  45. 45.
    Ya. M. Grigorenko, N. D. Draigor, and A. I. Shinkar', “On the solution of problems concerning the stressed state of multilayer orthotropic cylindrical shells with variable rigidity in two directions,” Soprot. Mater. Teor, Sooruzh., No. 30, 3–10 (1977).Google Scholar
  46. 46.
    Ya. M. Grigorenko, A. B. Kitaigorodskii, V. V. Semenov, et al., Calculation of Orthotropic Laminated Shells of Revolution with Variable Parameters on ES Computers [in Russian], Naukova Dumka, Kiev (1980).Google Scholar
  47. 47.
    Ya. M. Girgorenko and N. N. Kryukov, “Numerical solution of nonlinear boundary-value problems in the theory of flexible circular plates,” Vychisl. Prikl. Mat., No. 41, 46–52 (1980).Google Scholar
  48. 48.
    Ya. M. Grigorenko and N. N. Kryukov, “An approach to the numerical solution of boundaryvalue problems in the statics of flexible shells,” Dokl. Akad. Nauk. Ukr. SSR, Ser A, No. 4 21–24 (1982).Google Scholar
  49. 49.
    Ya. M. Grigorenko, N. N. Kryukov, and T. G. Akhalaya, “Nonlinear deformation of circular plates of variable thickness,” ibid.,, No. 8, 622–625 (1979).Google Scholar
  50. 50.
    Ya. M. Grigorenko, N. N. Kryukov, and V. S. Demyanchuk, “Deformation of flexible shells of revolution with variable rigidity,” ibid., No. 4 42–46 (1983).Google Scholar
  51. 51.
    Ya. M. Grigorenko, N. N. Kryukov, and Kh. Saparov, “Not-axially-symmetric deformation of flexible conical shells of variable thickness,” Prikl. Mekh.,9, No. 5, 29–35 (1983).Google Scholar
  52. 52.
    Ya. M. Grigorenko and A. P. Mukoed, Solution of Problems in the Theory of Shells Using Domputers [in Russian], Vishcha Shkola, Kiev (1979).Google Scholar
  53. 53.
    Ya. M. Grigorenko and A. P. Mukoed, Solution of Nonlinear Problems in Theory of Shells Using Computers [in Russian], Vishcha Shkola, Kiev (1983).Google Scholar
  54. 54.
    Ya. M. Grigorenko and A. M. Timonin, “Solution of not-axially-symmetric nonlinear problems in the statics of shells of revolution with low shear rigidity,” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 10, 30–34 (1981).Google Scholar
  55. 55.
    Ya. M. Grigorenko and A. M. Timonin, “Numerical solution of not-axially-symmetric problems in the nonlinear theory of laminated shells of revolution,” Prikl. Mekh.,18, No. 5, 43–48 (1982).Google Scholar
  56. 56.
    A. N. Guz', I. S. Chernyshenko, V. N. Chekhov, et al., Theory of Thin Shells Weakened by Holes [in Russian], Naukova Dumka, Kiev (1980). (Methods of Calculating Shells; Vol. 1).Google Scholar
  57. 57.
    V. I. Gulyaev, “The effect of the shape of a spiral shell on its stressed state,” Soprot. Mater. Teor. Sooruzh., No. 16, 6–10 (1972).Google Scholar
  58. 58.
    V. I. Gulyaev, Numerical Analysis of the Deformation of Shells in the Nonclassical and Classical Formulations. Author's abstract of a dissertation for the degree of Doctor of Physical and Mathematical Sciences, Kiev (1978).Google Scholar
  59. 59.
    V. I. Gulyaev, V. A. Bazhenov, and E. A. Gotsulyak, Stability of Nonlinear Mechanical Systems [in Russian], Vishcha Shkola, L'vov (1982).Google Scholar
  60. 60.
    D. F. Davidenko, “A new method for the numerical solution of systems of nonlinear equations,” Dokl. Akad. Nauk SSSR,88, No. 4, 601–602 (1953).Google Scholar
  61. 61.
    A. A. Dorodnitsyn, “A method of solving the equation of a laminar boundary layer,” Zh. Prikl. Mekh. Tekh. Fiz., No. 3, 111–118 (1960).Google Scholar
  62. 62.
    A. A. Dorodnitsyn, “A method of solving the equations of a boundary layer,” in: Some Problems of Mathematics and Mechanics [in Russian], Izd. Sib. Otd. Akad, Nauk SSSR, Novosibirsk (1961) pp. 77–83.Google Scholar
  63. 63.
    G. N. Dubner, “Use of the method of orthogonal factorization in problems of structural mechanics,” Izv. Vyssh. Uchebn. Zaved., Mashinostroenie, No. 11, 8–14 (1968).Google Scholar
  64. 64.
    O. Zienkiewicz and I. K. Cheung, Finite-Element Method in Engineering Science, McGraw-Hill.Google Scholar
  65. 65.
    N. P. Znamenskii, “Use of integral equations for calculating conical and cylindrical shells of variable rigidity,” Prikl. Probl. Prochnosti Plastichnosti, No. 8 27–32 (1978).Google Scholar
  66. 66.
    V. V. Kabanov and L. P. Zheleznov, “Nonlinear deformation of circular-cylinder shells under not-axially-symmetric pressure,” in: Calculation of Structural Elements of Aircraft [in Russian], Mashinostroenie, Moscow (1982), pp. 83–85.Google Scholar
  67. 67.
    V. V. Kabanov and V. D. Mikhailov, “Limiting state and stability of a cylindrical shell under not-axially-symmetric pressure,” in: Calculation of Structural Elements of Aircraft [in Russian], Mashinostroenie,. Moscow (1982), pp. 64–70.Google Scholar
  68. 68.
    S. A. Kabrits and V. F. Terent'ev, “Numerical construction of load-displacement diagrams in one-dimensional nonlinear problems in the theory of rods and shells,”, in: Current Problems of Nonlinear Mechanics of Continuous Media. Problems in Mechanics and Control Processes [in Russian], No. 1 (1977_, pp. 155–171.Google Scholar
  69. 69.
    B. Ya. Kantor, Nonlinear Problems in the Theory of Inhomogeneous Shallow Shells [in Russian], Naukova Dumka, Kiev (1971).Google Scholar
  70. 70.
    B. Ya. Kantor and S. I. Katorzhnoi, Variational-Segmental Method in the Nonlinear Theory of Shells [in Russian], Naukova Dumka, Kiev (1982).Google Scholar
  71. 71.
    B. Ya. Kantor, V. M. Mitkevich, and E. S. Shishkina, “Calculation of thin-walled structures of revolution by the finite-element method,” Int. Probl. Mashinostroeniya Akad. Nauk Ukr. SSR, Kharkov (1976).Google Scholar
  72. 72.
    L. V. Kantorovich and V. I. Krylov, Approximate Methods of Higher Analysis [in Russian], Fizmatgiz, Moscow-Leningrad (1962).Google Scholar
  73. 73.
    A. V. Karmishin, V. A. Lyaskovets, V. I. Myachenkov, and A. N. Frolov, Statics and Dynamics of Thin-Walled Shell-Type Structures [in Russian], Mashinostroenie, Moscow (1975).Google Scholar
  74. 74.
    N. A. Kil'chevskii, G. A. Izdebskaya, and L. M. Kiselevskaya, Lectures on the Analytical Mechanics of Shells [in Russian], Vishcha Shkola, Kiev (1974).Google Scholar
  75. 75.
    A. D. Kovalenko, Ya. M. Grigorenko, and L. A. Il'in, Theory of Thin Conical Shells and Its Application in Machine Design, [in Russian], Izd. Akad. Nauk Ukr. SSR (1963).Google Scholar
  76. 76.
    N. V. Kolkunov, Fundamentals of the Calculation of Elastic Shells [in Russian], Vishcha Shkola (1972).Google Scholar
  77. 77.
    L. Collatz, Functional Analysis and Numerical Mathematics, Academic Press (1966).Google Scholar
  78. 78.
    V. G. Korneev, “Comparison of the finite-element method with the variational-difference method of solving problems in the theory of elasticity,” Izv. VNII Gidrotekhniki, No. 83, 286–307 (1967).Google Scholar
  79. 79.
    M. S. Kornishin, Nonlinear Problems in the Theory of Plates and Shells and Methods of Solving Them [in Russian], Nauka, Moscow (1964).Google Scholar
  80. 80.
    M. S. Kornishin and F. S. Isanbaeva, Flexible Plates and Panels [in Russian], Nauka, Moscow (1968).Google Scholar
  81. 81.
    A. V. Korovaitsev, “Numerical solution of nonlinear equations of axially symmetric shells of revolution,” Izv. Vyssh. Uchebn. Zaved., Mashinostroenie, No. 2, 13–17 (1978).Google Scholar
  82. 82.
    A. V. Korovaitsev, “Calculation of axially symmetric forms of equilibrium of an elastic spherical shell,” ibid., No. 3, 5–8 (1978).Google Scholar
  83. 83.
    V. A. Krys'ko, Nonlinear Statics and Dynamics of Inhomogeneous Shells [in Russian], Izd, Saratov. Un-ta, Saratov (1976).Google Scholar
  84. 84.
    A. L. Lur'e, Statics of Thin-Walled Elastic Shells [in Russian], Gostekhizdat, Moscow-Leningrad (1947).Google Scholar
  85. 85.
    G. I. Marchuk, Methods of Computational Mathematics [in Russian], Nauka, Novosibirsk (1973).Google Scholar
  86. 86.
    I. E. Mileikovskii and V. D. Raizer, “Development of applied methods in problems in the static design of thin-walled spatial systems (shells and folds),” in: Proceedings of the the Seventh All-Union Conference on the Theory of Shells and Plates [in Russian], Nauka, Moscow (1970), pp. 820–830.Google Scholar
  87. 87.
    P. I. Monastyryi, “An analog of A. A. Abramov's method,” Zh. Vychisl, Mat. Mat. Fiz., 5, No. 2, 342–347 (1965).Google Scholar
  88. 88.
    V. I. Myachenkov and I. V. Grigor'ev, Calculation of Composite Shell-Type Structures by Computers: A Handbook [in Russian], Mashinostroenie, Moscow (1981).Google Scholar
  89. 89.
    A. A. Nazarov, Fundamentals of the Theory and Methods of Calculating Shallow Shells [in Russian], Izd. Lit. Str-vu, Leningrad-Moscow (1966).Google Scholar
  90. 90.
    V. V. Novozhilov, Theory of Thin Shells [in Russian], Sudostroenie, Leningrad (1962).Google Scholar
  91. 91.
    V. V. Novozhilov, “The accuracy of models used in the mechanics of a deformable solid,” in: Program of the All-Union Scientific and Technical Conference entitled “Problems of Strength and Material Savings in Shell-Type Structures of Future Transport Ships and Floating Installations,” dedicated to the memory of Academician Yu. A. Shimanskii [in Russian], Leningr. Korablestroit. In-t (1982).Google Scholar
  92. 92.
    V. V. Novozhilov, “Ways of developing the theory of the deformation of polycrystals. Two articles on mathematical models in the mechanics of continuous media,” Moscow (1983). pp. 29–56. (Preprint Akad. Nauka SSSR, In-t Probl. Mekhaniki; No. 215).Google Scholar
  93. 93.
    I. F. Obraztsov, Variational Methods for the Calculation of Thin-Walled Aircraft Structure [in Russian], Mashinostroenie, Moscow (1966).Google Scholar
  94. 94.
    I. F. Obraztsov, “Problems in the statics and dynamics of modern engineering structures. State of the art, new problems, and prospects,” Probl. Prochnosti, No. 11, 3–11 (1982).Google Scholar
  95. 95.
    I. F. Obraztsov and R. M. Onanov, Structural Mechanics of Thin-Walled Skew Systems [in Russian], Mashinostroenie, Moscow (1973).Google Scholar
  96. 96.
    V. N. Paimushin, “On the problem of parametrization of the midele surface of a shell with complicated geometry,” in: Strength and Reliability of Complicated Systems [in Russian], Naukova Dumka, Kiev (1979), pp. 87–94.Google Scholar
  97. 97.
    V. N. Paimushin, Boundary-Value Problems in the Mechanics of the Deformation of Shells with Complicated Geometry, Author's abstract of a dissertation for the degree of Doctor of Physical and Mathematical Sciences, Kazan (1980).Google Scholar
  98. 98.
    P. F. Papkovich, Structural Mechanics of Ships. Part 2. Complex Flexure and Stability of Rods. Flexure and Stability of Plates [in Russian], Sudpromgiz, Leningrad (1941).Google Scholar
  99. 99.
    V. V. Petrov, “Investigation of finite deflections of plates and shallow shells by the method of successive loadings,” in: Theory of Plates and Shells. Proceedings of the Second All-Union Conference [in Russian], Izd. Akad. Nauk Ukr. SSR, Kiev (1962), pp. 328–331.Google Scholar
  100. 100.
    A. N. Potrov, The Method of Successive Loadings in the Nonlinear Theory of Plates and Shells [in Russian], Izd. Saratov, Un-ta, Saratov (1975).Google Scholar
  101. 101.
    A. N. Podgornyi, G. A. Marchenko, and V. I. Pustynnikov, Principles and Methods of the Applied Theory of Elasticity [in Russian], Vishcha Shkola, Kiev (1981).Google Scholar
  102. 102.
    Ya. S. Podstrigach and R. N. Shvets, Thermoelasticity of Thin Shells [in Russian], Naukova Dumka, Kiev (1983).Google Scholar
  103. 103.
    V. A. Postnov, S. A. Dmitriev, B. K. Eltyshev, and A. A. Rodionov, The Method of Super-elements in Calculations of Engineering Structures [in Russian], Sudostroenie, Leningrad (1979).Google Scholar
  104. 104.
    V. A. Postnov, V. S. Korneev, and N. G. Slezina, “Calculation of thin shells of revolution of arbitrary shape by the finite-element method,” Stroit. Mekh. Korablya, No. 148, 5–18 (1970).Google Scholar
  105. 105.
    V. A. Postnov and L. A. Rozin, “The finite-element method in the theory of plates and shells,” in: Proceedings of the Ninth All-Union Conference on the Theory of Shells and Plates [in Russian], Sudostroenie, Leningrad (1975), pp. 292–296.Google Scholar
  106. 106.
    V. A. Postnov and I. Ya. Kharkhurism, “Use of the finite-element method in the structural mechanics of ships,” Stroit. Mekh. Korablya, No. 149, 37–43 (1971).Google Scholar
  107. 107.
    V. A. Postnov and I. Ya. Kharkhurim, The Finite-Element Method in Ship Design Calculations [in Russian], Sudostroenie, Leningrad (1974).Google Scholar
  108. 108.
    V. L. Rvachev, The Theory of R-Functions and Some of Its Applications [in Russian], Naukova Dumka, Kiev (1982).Google Scholar
  109. 109.
    L. A. Rozin, Calculation of Hydrotechnical Structures by Computer. The Finite-Element Method [in Russian], Énergiya, Moscow (1971).Google Scholar
  110. 110.
    L. A. Rozin and L. A. Gordon, “The finite-element method in the theory of plates and shells,” Izv. VNII Gidrotekhniki, No. 95, 85–97 (1971).Google Scholar
  111. 111.
    L. A. Rozin and L. B. Grinze, “Calculation of arbitrary shells of revolution by the method of separation using computers,” Issled. Uprug. Plastich., No. 5, 70–118 (1966).Google Scholar
  112. 112.
    Ya. G. Savula, “Use of the semianalytic method of finite elements in calculating shells with a Monge middle surface,” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 2, 39–42 (1983).Google Scholar
  113. 113.
    Ya. G. Savula, N. P. Fleishman, and G. A. Shinkarenko, “The method of calculating pipes with an arbitrary curvilinear axis,” Soprot. Mater. Teor. Sooruzh., No. 32, 95–98 (1979).Google Scholar
  114. 114.
    A. A. Samarskii, Introduction to the Theory of Difference Schemes [in Russian], Nauka, Moscow (1971).Google Scholar
  115. 115.
    A. A. Samarskii, “Mathematical simulation and computational experimentation,” Vestn. Akad. Nauk SSSR, No. 5, 38–49 (1979).Google Scholar
  116. 116.
    L. V. Svirskii, Methods of the Bubnov-Galerkin Type and of Successive Approximations [in Russian], Nauka, Moscow (1968).Google Scholar
  117. 117.
    L. I. Sedov, “Future trends and problems in the mechanics of continuous media,” in: Modern Problems in Theoretical and Applied Mechanics [in Russian], Naukova Dumka, Kiev (1978), pp. 7–24.Google Scholar
  118. 118.
    A. L. Sinyavskii, Numerical Investigation of Spatial Systems. Author's abstract of a dissertation for the degree of Doctor of Physical and Mathematical Sciences, Kiev (1974).Google Scholar
  119. 119.
    G. Hall and J. Watt (eds.), Modern Numerical Methods for Ordinary Differential Equations [Russian translation], Mir, Moscow (1976).Google Scholar
  120. 120.
    S. P. Timoshenko and S. Voinovskii-Kriger, Plates and Shells [in Russian], Fizmatgiz, Moscow (1963).Google Scholar
  121. 121.
    A. G. Ugodchikov, Yu. G. Korotkikh, S. A. Kapustin, et al., “Numerical analysis of quasistatic elastoplastic problems in shells and plates,” in: Proceedings of the Ninth All-Union Conference on the Theory of Shells and Plates [in Russian], Sudostroenie, Leningrad (1975), pp. 334–340.Google Scholar
  122. 122.
    V. I. Feodos'ev, Elastic Elements of Precision Instrument Making [in Russian], Oborongiz, Moscow (1949).Google Scholar
  123. 123.
    V. I. Feodos'ev, “A method for solving problems of stability in deformable systems,” Prikl. Mat. Mekh.,27, No. 2, 265–275 (1963).Google Scholar
  124. 124.
    V. I. Feodos'ev, “Use of the step method for analyzing the stability of a compressed rod,” ibid.,27, No. 5, 833–841 (1965).Google Scholar
  125. 125.
    V. I. Feodos'ev, Ten Lectures on the Resistance of Materials [in Russian], Nauka, Moscow (1969).Google Scholar
  126. 126.
    V. I. Feodos'ev, “Axially symmetric elasticity of a spherical shells,” Prikl. Mat. Mekh.,33, No. 2, 280–286 (1969).Google Scholar
  127. 127.
    A. N. Frolov and T. I. Khodtseva, “Investigation of the nonlinear behavior of a toroidal shell under external pressure,” in: Proceedings of the Tenth All-Union Conference on the Theory of Shells and Plates [in Russian], Tbilisi (1975), Vol. 1, pp. 698–702.Google Scholar
  128. 128.
    R. W. Hamming, Numerical Methods for Scientists and Engineers [Russian translation], Nauka, Moscow (1968).Google Scholar
  129. 129.
    V. S. Chernina, Statics of Thin-Walled Shells of Revolution [in Russian], Nauka, Moscow (1968).Google Scholar
  130. 130.
    K. F. Chernykh, Linear Theory of Shells [in Russian], Izd. LGU, Leningrad, Part 1 (1962), 374 pp.; Part 2 (1964).Google Scholar
  131. 131.
    V. S. Chuvikovskii, O. M. Palii, and V. E. Spiro, Shells in Ship Design [in Russian], Sudostroenie, Leningrad (1966).Google Scholar
  132. 132.
    V. I. Shalashilin, “The method of parametric continuation of the solution in a problems concerning large axially symmetric deflections of shells of revolution,” in: Proceedings of the Twelfth All-Union Conference on the Theory of Shells and Plates [in Russian], Izd. Erevan. Un-ta, Erevan (1980), pp. 264–271.Google Scholar
  133. 133.
    V. E. Shamanskii, Methods of Numerical Solution of Boundary-Value Problems on Computers [in Russian], Naukova Dumka, Kiev (1966), part 2.Google Scholar
  134. 134.
    L. E. El'sgol'ts, The Calculus of Variations [in Russian], Gostekhizdat, Moscow (1958).Google Scholar
  135. 135.
    B. Budiansky and P. P. Radkowski, “Numerical analysis of unsymmetrical bending of shells of revolution,” AIAA Journal,1, No. 8, 1833–1842 (1963).Google Scholar
  136. 136.
    G. A. Gohen, “Computer analysis of asymmetrical deformation of orthotropic shells of revolution,” AIAA Journal,2, No. 5, 932–934 (1964).Google Scholar
  137. 137.
    P. F. Gordan and P. E. Shelley, “Stabilization of unstable two-point boundary-value problems,” AIAA Journal,4, No. 5, 923–924 (1966).Google Scholar
  138. 138.
    K. Junghauss, “Berechnung von Rotationsschalen beliebiger Meridianform und veranderlicher Wanddicke,” Maschinenbautechnik,17, 349–354 (1968).Google Scholar
  139. 139.
    A. Kalnins, “Analysis of shells of revolution subjected to symmetrical and nonsymmetrical loads,” Trans. ASME, Ser. E,31, No. 3, 467–476 (1964).Google Scholar
  140. 140.
    A. Kalnins, “Analysis of curved thin-walled shells of revolution,” AIAA J.,6, No. 4, 584–588 (1968).Google Scholar
  141. 141.
    L. Knöfel, Über ein numerisches Verfahren zur Berechnung der Schnittogroben in geschlossenen Kreiszylinderschalen mit linear veränderlicher Wandstärke bei unsymmetricscher Belastung,” Wiss. Z. Techn. Hochsch. Otto von Guericke, Magdeburg,12, No. 2-3, 231–241 (1968).Google Scholar
  142. 142.
    P. P. Radkowski, R. M. Davis, and M. P. Boldas, “Numerical analysis of equations of thin shells of revolution,” ARS J., No. 32, 36–41 (1962).Google Scholar
  143. 143.
    W. K. Sepetoski, C. E. Pearson, J. W. Dingwell, and A. W. Adkins, “A digital computer program for the general axially symmetric thin shells problem,” Trans. ASME, Ser. E,29, No. 4, 655–661 (1962).Google Scholar
  144. 144.
    S. Utku and N. S. Head, “Utilization of digital computers in the analysis of thin shells,” Bul. Reunion Inter. Lab. Essais Rech. Mater. Constr., No. 19, 29–44 (1963).Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • Ya. M. Grigorenko

There are no affiliations available

Personalised recommendations