Applied physics

, Volume 1, Issue 5, pp 269–274 | Cite as

Fluorescence quenching in Nd:YAG

  • H. G. Danielmeyer
  • M. Blätte
  • P. Balmer
Contributed Papers


We show that quenching of the Nd fluorescence is in principle not associated with the Nd3+ ion but with the host. The process is due to near-field electric dipole interaction between Nd pairs, and cross relaxation via the4I1 5/2 manifold. We present for the first time the complete fluorescence spectrum and level scheme of Nd∶YAG, and find that Nd∶YAG has an exceptional level configuration which boosts cross relaxation. Our results encourage the search for new Nd laser materials which have a slightly different position of the4I1 5/2 manifold so that higher Nd concentrations can be achieved for integrated-optics applications. Finally, we report on implications of energy migration which we found to be quite effective in Nd∶YAG.

Index Headings

Neodymium YAG Fluorescence quenching 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Laser Focus, July 1972, p. 36Google Scholar
  2. 2.
    J. D. Foster, L. M. Osterink: J. Appl. Phys.41, 3656 (1970)CrossRefADSGoogle Scholar
  3. 3.
    J. E. Geusic: Solid State Maser Res. (Optical), Final Report AD-482-511 (August 1965)Google Scholar
  4. 4.
    L. G. van Uitert: J. Chem. Phys.46, 420 (1967)CrossRefGoogle Scholar
  5. 5.
    G. E. Peterson, P. M. Bridenbaugh: J. Opt. Soc. Am.54, 644 (1964)Google Scholar
  6. 6.
    F. Willmann, D. Bimberg, M. Blätte: Phys. Rev.B7, (1973)Google Scholar
  7. 7.
    P. P. Feovilov, V. A. Timoteeva, M. N. Tolstoi, L. M. Belyaev: Opt. and Spectr.19, 451 (1965)Google Scholar
  8. 8.
    T. Kushida, J. E. Geusic: Phys. Rev. Letters21, 1172 (1968). The authors quote a quantum efficiency of >0.995. New measurements by S. Singh at Bell Laboratories yielded, however, a much lower value (private communication, March 1973)CrossRefADSGoogle Scholar
  9. 9.
    B. Judd: Phys. Rev.127, 750 (1962)CrossRefADSGoogle Scholar
  10. 10.
    Th. Förster: Ann. Phys.2, 55 (1948), reformulated by D. L. Dexter and J. H. Schulman in J. Chem. Phys.22, 1063 (1954)Google Scholar
  11. 11.
    R. K. Watts: J. Opt. Soc. Am.61, 123 (1971)Google Scholar
  12. 12.
    H. G. Danielmeyer: J. Appl. Phys.42, 3125 (1971)CrossRefADSGoogle Scholar
  13. 13.
    W. F. Krupke: IEEE J. Quantum Electr.QE-7, 153 (1971)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • H. G. Danielmeyer
    • 1
  • M. Blätte
    • 1
  • P. Balmer
    • 2
  1. 1.Max-Planck-Institut für FestkörperforschungStuttgart 1Fed. Rep. Germany
  2. 2.Hrand Djévahirdjian s.a.MontheySwitzerland

Personalised recommendations