Advertisement

Zeitschrift für Vererbungslehre

, Volume 93, Issue 2, pp 287–300 | Cite as

DNA synthesis and induced mutations in the presence of 5-bromouracil I. DNA synthesis in the presence of 5-bromouracil

  • Eunice Strelzoff
Article

Summary

An investigation has been carried out dealing with the incorporation of BU into DNA ofE. coli 15 thy under conditions of complete thymine deficiency. It was found that exponentially growing cells can increase their DNA 5-fold upon suspension in BU-supplemented medium. DNA increased in a linear fashion and followed the series ×, 2×, 3×, 4× where × is the amount of DNA initially present. If thy cells were starved for 30 minutes before being provided with BU, DNA appeared to increase stepwise although the increase during each period of synthesis was equal only to the amount of DNA initially present. Paper chromatography revealed that BU totally replaced thymine in the newly-synthesized DNA. Equilibrium density gradient techniques and radioactive labeling made it possible to ascertain that the DNA in which BU fully replaced thymine was functional on the primary level, that of “priming” or taking iart in the synthesis of new DNA. Cellular inhibition as indicated by lethality was described and possible explanations for the inhibition resulting from incroporation of BU into DNA were discussed.

Keywords

Chromatography Density Gradient Thymine Paper Chromatography Linear Fashion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atwood, K. C.: Sequential deoxyrobonucleic acid replication. Science132, 617–618 (1960).PubMedGoogle Scholar
  2. Barner, H. D., andS. S. Cohen: The induction of thymine synthesis by T 2 infection of a thymine requiring mutant ofEscherichia coli. J. Bact.68, 80–88 (1954).PubMedGoogle Scholar
  3. ——: Synrononization of a thymineless mutant ofEscherichia coli. J. Bact.72, 115–123 (1956).PubMedGoogle Scholar
  4. ——: Protein synthesis and RNA turnover in a pyrimidine-deficient bacterium. Biochim. biophys. Acta30, 12–20 (1958).PubMedGoogle Scholar
  5. Bendich, A., H. B. Pahl andG. B. Brown: Chromatographic fractionation ofE. coli DNA containing 5-bromouracil-2-C14. In: The chemical basis of heredity, pp. 378–396. Baltimore: Johns Hopkins Press 1957.Google Scholar
  6. Chargaff, E., R. Lipshitz, C. Green andM. E. Hodes: The composition of the desory-ibonucleic acid of salmon sperm. J. biol. Chem.192, 223–230 (1951).PubMedGoogle Scholar
  7. Cohen, G. N., andR. Munier: Effects des analogues structuraux d'aminoacides sur la croissance, la synthèse de protéines et la synthèse d'enzymes chezEscherichia coli. Biochim. biophys. Acta31, 347–356 (1959).PubMedGoogle Scholar
  8. Cohen, S. S., andH. Barner: Studies on the induction of thymine deficiency and on the effects of thymine and thymidine analogues inEscherichia coli. J. Bact.71, 588–597 (1956).PubMedGoogle Scholar
  9. Dische, Z.: Color reactions of nucleic acid components. In: The Nucleic acids, vol. I, pp. 285–305. New York: Academic Press 1955.Google Scholar
  10. Djordjevic, B., andW. Szybalski: Genetics of human cell lines. III. Incorporation of 5-bromo and 5-iododeoxyuridine into the deoxyribonucleic acid of human cells and its effect on radiation sensitivity. J. exp. Med.112, 509–531 (1960).PubMedGoogle Scholar
  11. Dunn, D. B., andJ. D. Smith: Incorporation of halogenated pyrimidines into the deoxyribonucleic acids ofBacterium coli and its bacteriophages. Nature (Lond.)174, 305–306 (1954).Google Scholar
  12. ——: The occurrence of 6-methylaminopurine in deoxyribonucleic acids. Biochem. J.68, 627–636 (1958).PubMedGoogle Scholar
  13. Freese, E.: The difference between spontaneous and base-analogue induced mutations of phage T 4. Proc. nat. Acad. Sci. (Wash.)45, 622–633 (1959).Google Scholar
  14. Greer, S.: Studies on ultraviolet irradiation ofEscherichia coli containing 5-bromouracil in its DNA. J. gen. Microbiol.22, 618–634 (1960).PubMedGoogle Scholar
  15. Grigg, G.: Personal communication 1961.Google Scholar
  16. Hanawalt, P. C.: Use of phosphorus-32 in microassay for nucleic acid synthesis inEscherichia coli. Science130, 386–387 (1959).PubMedGoogle Scholar
  17. —, andR. Setlow: Effect of monochromatic ultraviolet light on macromolecular synthesis inEscherichia coli. Biochim. biophys. Acta41, 283–294 (1959).Google Scholar
  18. Kaplan, H. S., andP. A. Tomlin: Enhancement of X-ray sensitivity ofE. coli by 5-bromouracil. Abstract. Radiat. Res.12, 447–448 (1960).Google Scholar
  19. Kitt, S., C. Beck, O. L. Graham andA. Gross: Effect of 5-bromodeoxyuridine on deoxyribonucleic acid-thymine synthesis and cell metabolism of lymphatic tissues and tumors. Cancer Res.18, 598–602 (1958).PubMedGoogle Scholar
  20. Kozinski, A. W., andW. Szybalski: Dispersive transfer of the parental DNA molecule to the progeny of phage X-174. Virology9, 260–274 (1959).PubMedGoogle Scholar
  21. Litman, R. M., andA. B. Pardee: The induction of mutants of bacteriophage T 2 by 5-bromauracil. II. Nutritional and structural evidence regarding mutagenic action. Biochim. biophys. Acta42, 117–130 (1960).PubMedGoogle Scholar
  22. Markham, R., andJ. D. Smith: Chromatographic studies of nucleic acids. 1 A technique for the identification and estimation of purine and pyrimidine bases, nucleosides and related substances. Biochem. J.45, 294–298 (1949).PubMedGoogle Scholar
  23. Marshak, A., andH. J. Vogel: P32 in nucleotides of nuclear pentosenucleic acid of rabbit liver. Fed. Proc.9, 85–86 (1950).Google Scholar
  24. Meselson, M., F. W. Stahl andJ. Vinograd: Equilibrium sedimentation of macromolecules in density gradients. Proc. nat. Acad. Sci. (Wash.)43, 581–588 (1957).Google Scholar
  25. ———: The replication of DNA inEscherichia coli. Proc. nat. Acad. Sci. (Wash.)44, 671–682 (1958).Google Scholar
  26. Miller, G. L., R. H. Golder andE. E. Miller: Determination of pentoses. Effect of varying proportions of components of Bial's color reagent. Anal. Chem.23, 903–905 (1951).Google Scholar
  27. Opara-Kubinska, Z., Z. Lorkiewicz andW. Szybalski: Genetic transformation studies. II. Radiation sensitivity of halogen labeled DNA. Biochem. biophys. Res. Commun.4, 288–291 (1961).PubMedGoogle Scholar
  28. Robinow, C. F.: Nuclear apparatus and cell structure of rod-shaped bacteria. InR. J. Dubos (edit), The bacterial cell, pp. 355–377. Cambridge, Mass.: Harvard University Press 1945.Google Scholar
  29. Ryan, F. J.: Bacterial mutation in a stationary phase and the question of cell turnover. J. gen. Microbiol.21, 530–549 (1959).PubMedGoogle Scholar
  30. Schneider, W. C.: Phosphorus compounds in animal tissues. I. Extraction and estimation of desoxypentose nucleic acid and of pentose nucleic acid. J. biol. Chem.161, 293–303 (1945).Google Scholar
  31. Shapiro, H. S., andE. Chargaff: Severe distortion by 5-bromouracil of the sequence characteristics of a bacterial deoxyribonucleic acid. Nature (Lond.)188, 62–63 (1960).Google Scholar
  32. Stahl, F. W., J. M. Crasemann, L. Okun, E. Fox andC. Laird: Radiation-sensitivity of bacteriophage containing 5-bromodeoxyuridine. Virology13, 98–104 (1961).Google Scholar
  33. Strelzoff, E.: DNA synthesis and induced mutations in the presence of 5-bromouracil. II. Z. Vererb.-Lehre93, 301–318 (1962).Google Scholar
  34. Strelzoff, E.: Unpublished results, 1962b.Google Scholar
  35. Szybalski, W.: Ultraviolet light sensitivity and other biological and physicochemical properties of halogenated DNA. The Finsen Memorial Congr. Copenhagen, 1960, pp. 542–545. InB. C. Christensen andB. Buchmann (edits.), Progress in photobiology. Proc. III Intl. Congr. Photobiol.Google Scholar
  36. Z. Opara-Kubinska, Z. Lorkiewicz, E. Ephratielizur andS. Zamenhof: Transforming activity of deoxyribonucleic acid labelled with 5-bromouracil. Nature (Lond.)188, 743–745 (1960).Google Scholar
  37. Tsubbi, K. K., andT. D. Price: Isolation, detection and measure of microgram quantities of labeled tissue nucleotides. Arch. Biochem.81, 223–237 (1959).PubMedGoogle Scholar
  38. Vischer, E., andE. Chargaff: The separation and quantitative estimation of purines and pyrimidines in minute amounts. J. biol. Chem.176, 703–714 (1948).Google Scholar
  39. Wacker, A., H. Dellweg andD. Weinblum: Über die strahlensensibilisierende Wirkung des 5-Bromouracils. J. molec. Biol.3, 787–789 (1961).PubMedGoogle Scholar
  40. Weygand, R., A. Wacker andH. Z. Dellweg: Stoffwechseluntersuchungen bei Mikroorganismen mit Hilfe radioaktiver Isotope. II. Kompetitive und nichtkompetitive Enthemmung von 5-82Br-Uracil. Z. Naturforsch.8b, 19–25 (1952).Google Scholar
  41. Wulff, D. L., andG. Fraenkel: On the nature of thymine photoproduct. Biochim. biophys. Acta (Amst.)51, 332–339 (1961).Google Scholar
  42. Zamenhof, S., R. de Giovanni andS. Greer: Induced gene stabilization. Nature (Lond.)181, 827–829 (1958a).Google Scholar
  43. —— andK. Rich:Escherichia coli containing unnatural pyrimidines in its deoxyribonucleic acid. J. Bact.71, 60–69 (1956b).PubMedGoogle Scholar
  44. —, andS. Greer: Heat as an agent producing high frequency of mutations and unstable genes inEscherichia coli. Nature (Lond.)182, 611–613 (1958b).Google Scholar
  45. —, andG. Griboff: Incorporation of halogenated pyrimidines into the deoxyribonucleic acids ofBacterium coli. Nature (Lond.)174, 306ff. (1954).Google Scholar
  46. —,B. Reiner, R. de Giovanni andK. Rich: Introduction of unnatural pyrimidines into deoxyribonucleic acid ofEscherichia coli. J. biol. Chem.219, 165–173 (1956a).PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1962

Authors and Affiliations

  • Eunice Strelzoff
    • 1
    • 2
  1. 1.Department of ZoologyColumbia UniversityNew York
  2. 2.Medical CenterNew York UniversityNew York 16USA

Personalised recommendations