Soviet Applied Mechanics

, Volume 6, Issue 12, pp 1308–1313 | Cite as

Theory of wave propagation in an elastic isotropic body with initial deformations

  • A. N. Guz'
  • F. G. Makhort
  • O. I. Gushcha
  • V. K. Lebedev
Article
  • 46 Downloads

Keywords

Wave Propagation Initial Deformation Isotropic Body Elastic Isotropic Body 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    A. E. Green and J. E. Adkins, Large Elastic Deformations and Nonlinear Continuum Mechanics, Clarendon Press, Oxford (1960).Google Scholar
  2. 2.
    A. N. Guz', “Linearized problems of the theory of elasticity,” Prikl. Mekhan.,6, No. 2 (1970).Google Scholar
  3. 3.
    O. I. Gushcha and V. K. Lebedev, “Instrumentation for measuring the speed of ultrasound,” Avtomat. Svarka, No. 10 (1966).Google Scholar
  4. 4.
    O. I. Gushcha and V. K. Lebedev, “The influence of stresses on the speed of ultrasonic waves in metals,” Prikl. Mekhan.,4, No. 2 (1968).Google Scholar
  5. 5.
    V. V. Novozhilov, Foundations of the Nonlinear Theory of Elasticity, Graylock Press, Rochester, New York (1953).Google Scholar
  6. 6.
    V. V. Novozhilov, Theory of Elasticity, Pergamon, New York (1961).Google Scholar
  7. 7.
    R. N. Thurston, “Wave propagation in fluids and normal solids,” in: Physical Acoustics. Vol. 1 Part A, Academic Press, New York (1964), pp. 1–110.Google Scholar
  8. 8.
    M. Hayes and R. S. Rivlin, “Propagation of a plane wave in an isotropic elastic material subjected to pure homogeneous deformation,” Arch. Rotational Mech. Anal.,8, No. 1, 15–22 (1961).Google Scholar
  9. 9.
    D. I. Crecraft, “Ultrasonic wave velocities in stressed nickel-steel,” Nature,195, No. 4847 (1962).Google Scholar
  10. 10.
    A. E. Green, R. S. Rivlin, and R. T. Shield, “General theory of a small elastic deformation superposed on finite elastic deformations,” Proc. Roy. Soc.,211, Ser. A, No. 1104 (1952).Google Scholar
  11. 11.
    D. S. Hughes and J. L. Kelly, “Second-order of elastic deformation of solids,” Phys. Rev.,92, No. 5 (1953).Google Scholar
  12. 12.
    A. H. Meitzler and A. H. Fitch, “Acoustoelastic effect in vitreous silica, Pyrex, and T-40 glass,” J. Appl. Phys.,40, No. 4 (1969).Google Scholar
  13. 13.
    F. D. Murnaghan, Finite Deformation of an Elastic Solid, Wiley, New York (1951).Google Scholar
  14. 14.
    R. T. Smith, “Stress-induced anisotropy in solids and the acoustoelastic effect,” Ultrasonics,1, No. 3 (1963).Google Scholar
  15. 15.
    R. A. Toupin and B. Bernstein, “Sound waves in deformed perfectly elastic materials. Acoustoelastic effect,” J. Acoust. Soc. Amer.,33, No. 2 (1961).Google Scholar

Copyright information

© Consultants Bureau 1973

Authors and Affiliations

  • A. N. Guz'
  • F. G. Makhort
  • O. I. Gushcha
  • V. K. Lebedev

There are no affiliations available

Personalised recommendations