Zeitschrift für Vererbungslehre

, Volume 96, Issue 2, pp 93–104 | Cite as

Ribonucleic acid synthesis in isolated tobacco leaf nuclei

  • Le Roy Kuehl


Nuclei isolated from tobacco leaves have been found capable of catalyzing a DNA-dependent incorporation of [8-14C] adenylic acid (supplied as the nucleoside triphosphate) into RNA in the presence of magnesium ion and the other three triphosphates.

Incorporation stops after 30 to 120 min at 28o at which time only a small fraction of the added label has been incorporated. Evidence is presented to show that this premature cessation of synthesis is due to a blocking of the DNA template by the newly synthesized RNA.

Synthesis is greatly stimulated by raising the ionic strength of the reaction mixture to 1.1, an effect believed to be due to release of molecules which normally block portions of the DNA template.


Magnesium Ionic Strength Nucleoside Triphosphate Acid Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allfrey, V. G., R. Faulkner, andA. E. Mirsky: Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc. nat. Acad. Sci. (Wash.)51, 786 (1964).Google Scholar
  2. —,V. C. Littau, andA. E. Mirky: On the role of histones in regulating ribonucleic acid synthesis in the cell nucleus. Proc. nat. Acad. Sci. (Wash.)49, 414 (1963).Google Scholar
  3. —, andA. E. Mirsky: Evidence for the complete DNA-dependence of RNA synthesis in isolated thymus nuclei. Proc. nat. Acad. Sci. (Wash.)48, 1590 (1962).Google Scholar
  4. Bayley, P. M., B. N. Preston, andA. R. Peacocke: Thymus deoxyribonucleoprotein II. Dissociation in sodium chloride solution. Biochim. biophys. Acta (Amst.)66, 943 (1962).Google Scholar
  5. Biswas, B. B. andR. Abrams: Incorporation of nucleoside triphosphates into ribonucleic acid with a particulate fraction of disrupted thymus nuclei. Biochim. biophys. Acta (Amst.)55, 827 (1962).Google Scholar
  6. Bonner, J., R. C. Huang, andN. Maheshwari: The physical state of newly synthesized RNA. Proc. nat. Acad. Sci. (Wash.)47, 1548 (1961).Google Scholar
  7. Bremer, H., andM. W. Konrad: A complex of enzymatically synthesized RNA and template DNA. Proc. nat. Acad. Sci. (Wash.)51, 801 (1964).Google Scholar
  8. Burma, D. P., H. Kröger, S. Ochoa, R. C. Warner, andJ. D. Weill: Further studies on Deoxyribonucleic acid-dependent enzymatic synthesis of ribonucleic acid. Proc. nat. Acad. Sci. (Wash.)47, 749 (1961).Google Scholar
  9. Byrne, R., J. G. Levin, H. A. Bladen, andM. W. Nirenberg: Thein vitro formation of a DNA-ribosome complex. Proc. nat. Acad. Sci. (Wash.)52, 140 (1964).Google Scholar
  10. Crampton, C. F., R. Lipschitz, andE. Chargaff, Studies on nucleoproteins I. Dissociation and reassociation of the deoxyribonucleohistone of calf thymus. J. biol. Chem.206, 499 (1954).PubMedGoogle Scholar
  11. Fox, C. F., W. S. Robinson, R. Haselkorn, andS. B. Weiss: Enzymatic synthesis of ribonucleic acid III. The ribonucleic acid-primed synthesis of ribonucleic acid withMicrococcus lysodeikticus ribonucleic acid polymerase. J. biol. Chem.239, 186 (1964).PubMedGoogle Scholar
  12. —, andS. B. Weiss: Enzymatic synthesis of ribonucleic acid II. Properties of the deoxyribonucleic acid-primed reaction withMicrococcus lysodeikticus ribonucleic acid polymerase. J. biol. Chem.239, 175 (1964).PubMedGoogle Scholar
  13. Goldberg, I. H.: Ribonucleic acid synthesis in nuclear extracts of mammalian cells grown in suspension culture; effect of ionic strength and surface-active agents. Biochim. biophys. Acta (Amst.)51, 201 (1961).Google Scholar
  14. —,M. Rabinowitz, andE. Reich: Basis of actinomycin action, I. DNA binding and inhibition of RNA-polymerase synthetic reactions by actinomycin. Proc. nat. acad. Sci. (Wash.)48, 2094 (1962).Google Scholar
  15. Hancock, R. L., R. F. Zelis, M. Shaw, andH. G. Williams-Ashman: Incorporation of ribonucleoside triphosphates into ribonucleic acid by nuclei of the prostate gland. Biochim. biophys. Acta (Amst.)55, 257 (1962).Google Scholar
  16. Huang, R. C. C., J. Bonner, andK. Murray: Physical and biological properties of soluble nucleohistones. J. molec. Biol.8, 54 (1964).Google Scholar
  17. Huang, R. C., N. Maheshwari, andJ. Bonner: Enzymatic synthesis of RNA. Biochem. biophys. Res. Commun.3, 689 (1960).PubMedGoogle Scholar
  18. Izawa, M., V. G. Allfrey, andA. E. Mirsky: The relationship between RNA synthesis and loop structure in lampbrush chromosomes. Proc. nat. Acad. Sci. (Wash.)49, 544 (1963).Google Scholar
  19. Kirk, J. T. O.: Studies on RNA synthesis in chloroplast preparations. Biochem. biophys. Res. Commun.16, 233 (1964).PubMedGoogle Scholar
  20. Kuehl, L.: Isolation of plant nuclei. Z. Naturforsch.19b, 525 (1964).Google Scholar
  21. Logan, R., A. Ficq, andM. Errera: The uptake of [8-14C] adenine and [2-14C] phenylalanine by rat-liver nucleiin vitro. Biochim. biophys. Acta (Amst.)31, 402 (1959).Google Scholar
  22. Mirsky, A. E., A. W. Pollister: Nucleoproteins of cell nuclei. Proc. nat. Acad. Sci. (Wash.)28, 344 (1942).Google Scholar
  23. Nakamoto, T., C. F. Fox, andS. B. Weiss: Enzymatic synthesis of ribonucleic acid I. Preparation of ribonucleic acid polymerase from extracts ofMicrococcus lysodeikticus. J. biol. Chem.239, 167 (1964).PubMedGoogle Scholar
  24. Reich, E., R. M. Franklin, A. J. Shatkin, andE. L. Tatum: Action of actinomycin D on animal cells and viruses. Proc. nat. Acad. Sci. (Wash.)48, 1238 (1962).Google Scholar
  25. Rho, J. H., andM. I. Chipchase: Incorporation of tritiated cytidine into ribonucleic acid by isolated pea nuclei. J. Cell Biol.14, 183 (1962).PubMedGoogle Scholar
  26. Ro, T. S., M. Muramatsu, andH. Busch: Labeling of RNA of siolated nucleoli with UTP-14C. Biochem. biophys. Res. Commun.14, 149 (1964).PubMedGoogle Scholar
  27. Stent, G. S.: The operon: On its third anniversary. Science144, 816 (1964).PubMedGoogle Scholar
  28. Stevens, A.: Studies of the ribonucleic acid polymerase fromEscherichia coli II. Studies of homopolymer formation. J. biol. Chem.239, 204 (1964).PubMedGoogle Scholar
  29. —, andJ. Henry: Studies of the ribonucleic acid polymerase fromEscherichia coli I. Purification of the enzyme and studies of ribonucleic acid formation. J. biol. Chem.239, 196 (1964).PubMedGoogle Scholar
  30. Weiss, S. B.: Enzymatic incorporation of ribonucleoside triphosphates into the interpolynucleotide linkages of ribonucleic acid. Proc. nat. Acad. Sci. (Wash.)46, 1020 (1960).Google Scholar
  31. —, andT. Nakamoto: The enzymatic synthesis of RNA: Nearest-neighbor base frequencies. Proc. nat. Acad. Sci. (Wash.)47, 1400 (1961).Google Scholar

Copyright information

© Springer-Verlag 1965

Authors and Affiliations

  • Le Roy Kuehl
    • 1
    • 2
  1. 1.Abteilung MelchersMax-Planck-Institut für BiologieTübingenGermany
  2. 2.Department of Biological ChemistryUniversity of UtahSalt Lake CityUSA

Personalised recommendations