Soviet Applied Mechanics

, Volume 9, Issue 1, pp 1–7 | Cite as

The equations of dynamics (review)

  • B. N. Fradlin
  • L. D. Roshchupkin
Article
  • 31 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    A. Dzhondzhorov, “Generalized formulas for derivatives of complex functions and some applications in mechanics” [in Bulgarian], Godishnik na Vischite Tekhnicheski Uchebni Zavedeniya, Matematika,2 (1967).Google Scholar
  2. 2.
    V. V. Dobronravov, Fundamentals of the Mechanics of Nonholonomic Systems [in Russian], Vysshaya Shkola (1970).Google Scholar
  3. 3.
    Bl. Dolapchiev, “The Nielsen-Tsenov equations and their application to nonholonomic systems with nonlinear constraints,” Dokl. Akad. Nauk SSSR,171, No. 4 (1966).Google Scholar
  4. 4.
    Bl. Dolapchiev, “Jourdain principle and the Nielsen equations” [in Bulgarian], Godishnik na Sofiiskiya Universitet, FMF,59, (1966).Google Scholar
  5. 5.
    Bl. Dolapchiev, “The Appell-Tsenov forms of the equations of motion for holonomic and nonholonomic mechanical systems, method of generalization, and criteria for application” [in Bulgarian], Godishnik na Sofiiskiya Universitet, FMF,60 (1967).Google Scholar
  6. 6.
    Bl. Dolapchiev, “Some notes on the paper ‘Equations of motion of holonomic and nonholonomic material systems’ by I. Tsenov” [in Bulgarian], Godishnik na Sofiiskiya Universitet, FMF,62 (1969).Google Scholar
  7. 7.
    Bl. Dolapchiev, “Generalization of Nielsen-Tsenov equations” [in Bulgarian], Izvestiya na Matematicheskiya Institut Bulg. Akad. Nauk,10 (1969).Google Scholar
  8. 8.
    Bl. Dolapchiev, “Examples of application of reduced equations of Nielsen to nonholonomic mechanical systems” [in Bulgarian], Godishnik na Soffiskiya Universitet, FMF,62 (1969).Google Scholar
  9. 9.
    Bl. Dolapchiev, “Reduction of Nielsen equations for nonholonomic mechanical systems to the Chaplygin equations,” Prikl. Matem. Mekhan.,33, No. 5 (1969).Google Scholar
  10. 10.
    Bl. Dolapchiev, “Derivation of Keldish equation for ‘noise’ in airplane and automobile bodies through reduction of the Nielsen form for nonholonomic systems” [in Bulgarian], Godishnik na Soffiskiya Universitet, FMF,63 (1970).Google Scholar
  11. 11.
    Bl. Dolapchiev, “Application of the reduced equations of Nielsen for nonholonomic systems to the A. Yu. Ishlinski problem” [in Bulgarian], Izvestniya na Matematicheskiya Institut Bulg. Akad. Nauk,12 (1970).Google Scholar
  12. 12.
    Ya. S. Zil'berman, “Investigation of mechanisms by the method of reduced accelerations,” Tr. Rostovskovo-na-Donu Inst. Inzh. Zhel.-Dor. Transporta,29 (1961).Google Scholar
  13. 13.
    V. I. Kirgetov, “The equations of motion for controlled mechanical systems,” Prikl. Matem. Mekhan.,28, No. 2 (1964).Google Scholar
  14. 14.
    V. I. Kirgetov, “Motions of controlled mechanical systems with conditional constraints (servoconstraints),” Prikl. Matem. Mekhan.,31, No. 3 (1967).Google Scholar
  15. 15.
    O. I. Kukhtenko, “A type of dynamical system with nonholonomic constraints” [in Ukrainian], Dokl. Akad. Nauk Ukrainian RSR, No. 2 (1954).Google Scholar
  16. 16.
    O. I. Kukhtenko, “Equations of motion for automatically controlled continuous-feed cutter” [in Ukrainian], Dokl. Akad. Nauk Ukrainian RSR, No. 3 (1954).Google Scholar
  17. 17.
    O. I. Kukhtenko, “Stability of motion in automatically controlled continuous-feed cutting machine” [in Ukrainian], Dokl. Akad. Nauk Ukrainian RSR, No. 4 (1954).Google Scholar
  18. 18.
    A. I. Kukhtenko, “Analysis of the dynamics of nonholonomic control systems illustrated by a system for automatic control of cutting machines and combines,” Proceedings II All-Union Conference on the Theory of Automatic Control [in Russian], Vol. 2, Inst. Avtomatiki i Telemekhaniki, Akad. Nauk SSSR, Moscow-Leningrad (1955).Google Scholar
  19. 19.
    A. I. Kukhtenko, “On a class of nonholonomic mechanisms,” Proceedings of Seminar on the Theory of Machines and Mechanisms [in Russian], No. 59 (1955).Google Scholar
  20. 20.
    D. I. Mangeron, “Generalization of the Somov formula for accelerations of various orders,” Dokl. Akad. Nauk SSSR,102, No. 4 (1955).Google Scholar
  21. 21.
    D. I. Mangeron, “Graphoanalytic methods for the kinematics of material systems,” Dokl. Akad. Nauk SSSR,102, No. 5 (1955).Google Scholar
  22. 22.
    D. I. Mangeron, “Reduced accelerations of arbitrary order and some of their extremal properties,” Dokl. Akad. Nauk SSSR,112, No. 1 (1957).Google Scholar
  23. 23.
    D. I. Mangeron, “Generalized forms of the equations of analytic dynamics,” Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk,2 (1962).Google Scholar
  24. 24.
    D. I. Mangeron and K. Dregan, “Investigation of mechanisms by the method of reduced accelerations,” Proceedings of II All-Union Conference on Fundamental Problems in the Theory of Machines and Mechanisms [in Russian], Analiz i Sintez Mekhanizmov, Moscow (1960).Google Scholar
  25. 25.
    D. I. Mangeron and M. Ogitstoreli, “New equations of analytic mechanics and differential operators of higher orders,” Coll. translations, Mekhanika, No. 6 (1969).Google Scholar
  26. 26.
    D. I. Mangeron and A. I. Yasyulenis, “Some extremal properties of spatial reduced accelerations of arbitrary order used in the theory of machines and mechanisms,” Bull. Inst. Polit din Jasi,5(9, No. 1-2 (1959).Google Scholar
  27. 27.
    Yu. N. Maslov, “Nonholonomic systems with nonlinear constraints,” Nauchnye Trudy Tashkentsk. Gos. Un.,242 (1964).Google Scholar
  28. 28.
    D. S. Tavkhelidze and D. I. Mangeron, “New class of spatial reduced accelerations of arbitrary order used in the theory of machines and mechanisms,” Bull. Inst. Polit. din Jasi,5 (1959).Google Scholar
  29. 29.
    I. Tsenov, “New forms of generalized equations of motion in material systems” [in Bulgarian], Godishnik na Sofiiskiya Universitet, FMF (1949).Google Scholar
  30. 30.
    I. Tsenov, “A new form of the equations of analytic dynamics,” Dokl. Akad. Nauk SSSR,89, No. 1 (1953).Google Scholar
  31. 31.
    I. Tsenov, “Some transformations of the equations of motion and geodesic trajectories in mechanical systems,” Dokl. Akad. Nauk SSSR,89, No. 2 (1953).Google Scholar
  32. 32.
    I. Tsenov, “On the Gauss principle of least constraint,” Dokl. Akad. Nauk SSSR,89, No. 3 (1953).Google Scholar
  33. 33.
    I. Tsenov, “Integral variational principles of analytic dynamics,” Dokl. Akad. Nauk SSSR,89, No. 4 (1953).Google Scholar
  34. 34.
    I. Tsenov, “A new form of the equations of analytic dynamics and some applications of those equations” [in Bulgarian], Izvesiya na Matematicheskiya Institut Bulg. Akad. Nauk,1, Vol. 2 (1954).Google Scholar
  35. 35.
    I. Tsenov, “Equations of analytic dynamics” [in Bulgarian], Godishnik na Sofiiskiya Universitet, FMF, Vol. 1, Pt. 2 (1956).Google Scholar
  36. 36.
    I. Tsenov, “New equations of analytic dynamics,” Bull. Inst. Polit. din Jasi,5(9, No. 1-2 (1959).Google Scholar
  37. 37.
    I. Tsenov, “Application of new equations of analytic dynamics to relative motion of a solid” [in Bulgarian], Izvestniya na Matem. Inst. Bulg. Akad. Nauk,4, Vol. 2 (1960).Google Scholar
  38. 38.
    I. Tsenov, “Integral variational principles of analytic dynamics” [in Bulgarian], Godishnik na Sofiiskiya Universitet, FMF,57 (1964).Google Scholar
  39. 39.
    I. Tsenov, “General equations of analytic dynamics which are functions of velocity-dependent forces” [in Bulgarian], Godishnik na Sofiiskiya Universitet, FMF,59 (1966).Google Scholar
  40. 40.
    I. Tsenov, “application of the d'Alembert-Lagrange principle to holonomic and nonholonomic material systems in order to arrive at the equations of motion for such systems” [in Bulgarian], Izvestniya na Matematicheskiya Institut Bulg. Akad. Nauk9 (1966).Google Scholar
  41. 41.
    I. Tsenov, “Equations of motion in material systems with linear and nonlinear nonholonomic constrainst with respect to generalized velocities and accelerations” [in Bulgarian], Godishnik na Sofiiskiya Universitet, FMF,59 (1966).Google Scholar
  42. 42.
    I. Tsenov, “Equations of motion in holonomic and nonholonomic material systems” [in Bulgarian], Godishnik na Sofiiskiya Universitet, FMF,60 (1967).Google Scholar
  43. 43.
    I. Tsenov, “Derivation of equations of motion of a material system without using the d'Alembert-Lagrange or Holder principles” [in Bulgarian], Izvestniya na Matematicheskiya Institut Bulg. Akad. Nauk,12 (1970).Google Scholar
  44. 44.
    M. F. Shul'gin, “New form of Lagrangian equations of motion for holonomic systems,” Byull. Sredne-Asiatskovo Gos. Un.,23 (1945).Google Scholar
  45. 45.
    M. F. Shul'gin, “The method of ignorable coordinates in analytic mechanics,” Nauchnye Trudy Tashkentsk. Gos. Un.,30 (1949).Google Scholar
  46. 46.
    M. F. Shul'gin, “Lagrangian equations in ignorable coordinates,” Trudy Tashkentsk. Gos. Un., No. 320 (1968).Google Scholar
  47. 47.
    I. M. Shul'gina, “A new form of the equations of analytic dynamics,” Trudy Tashkentsk. Gos. Un., No. 189 (1961).Google Scholar
  48. 48.
    I. M. Shul'gina, “Generalization of certain dynamical equations of Tsenov,” Dokl. Akad. Nauk Uzbek SSR, No. 5 (1962).Google Scholar
  49. 49.
    I. M. Shul'gina, “Some forms of the equations of motion for a system of points with variable masses,” Trudy Tashkentsk. Gos. Un., No. 222 (1963).Google Scholar
  50. 50.
    I. M. Shul'gina and M. F. Shul'gin, “Generalization of the form of the Lagrangian equations for nonlinear nonholonomic systems of variable mass,” Trudy Tashkentsk. Gos. Un., No. 397 (1971).Google Scholar
  51. 51.
    Bl. Dolapchiev (Dolaptchiev), “Critères pour l'application des équations généralisées de Lagrange aux systèmes mécaniques non holonomes,” Compt. Rend. Acad. Sci. Paris,263, No. 9 (1966).Google Scholar
  52. 52.
    Bl. Dolapchiev (Dolaptchiev), “Sur les systèmes mécaniques non holonomes asujettis à des liaisons arbitraires,” Compt. Rend. Acad. Sci. Paris,262, No. 11 (1966).Google Scholar
  53. 53.
    Bl. Dolapchiev (Dolaptchiew), “Über die Nielsensche Form der Gleichungen von Lagrange und deren Zusammenhang mit dem Prinzip von Jourdain und mit den nichtholonomen mechanishen Systemen,” ZAMM,46, No. 6 (1966).Google Scholar
  54. 54.
    Bl. Dolapchiev (Dolaptschiew), “Über die verallgemeinerte Form der Lagrangeschen Gleichungern, welche auch die Behandlung von nichtholonomen mechanischen Systemen gestattet,” ZAMP,17, No. 3Google Scholar
  55. 55.
    Bl. Dolapchiev (Dolaptschiew), “Über die Aufstellung und die Anwendbarkeit einigen neuen Formen der Gleichungen der analytischen Dynamik,” Bull. Inst. Polit. din Jasi,13(17), No. 1-2 (1967).Google Scholar
  56. 56.
    Bl. Dolapchiev (Dolaptschiew), “Über die ‘verallgemeinerten’ Gleichungen von Lagrange und deren Zusammenhang mit dem ‘verallgemeinerten’ Prinzip von d'Alembert,” Journ. für die reine und angew. Math.,226 (1967).Google Scholar
  57. 57.
    Bl. Dolapchiev (Dolaptchiev), “Exemple d'application des équations de Nielsen à des systèmes mécaniques non holonomes,” Compt. Rend. Acad. Sci. Paris,267, No. 11 (1968).Google Scholar
  58. 58.
    Bl. Dolapchiev (Dolaptchiev), “Nouvel exemple d'application des équations de Nielsen à des systèmes mécaniques non holonomes,” Compt. Rend. Acad. Sci. Paris,267, No. 12 (1968).Google Scholar
  59. 59.
    Bl. Dolapchiev (Dolaptschiew), “Werwendung der einfachsten Gleichungen Tzenoffschen Typs (Nielsenschan Gleichungen) in der nichtholonomen Dynamik,” ZAMM,49, No. 3 (1969).Google Scholar
  60. 60.
    N. Irimiciuc and S. Deleanu, “Ecuatii generalizate in sensul lui I. Tenov si D. Mangeron pentru sisteme de puncte materials cu mase variabile,” Bull. Inst. Polit. din Jasi,11(15), No. 3-4 (1965).Google Scholar
  61. 61.
    D. Mangeron and S. Deleanu, “Sur une class d'équations de la mécanique analytique au sens de I. Tzénoff,” Compt. Rend. de l'Acad. Bulg. des Sci.,15, No. 1 (1962).Google Scholar
  62. 62.
    D. Mangeron and V. Tepentcharov, “Quelques problèmes concernant les opérateurs généralisés d'Euler-Lagrange,” Bull. Inst. Polit. din Jasi,8(12), No. 3-4 (1962).Google Scholar
  63. 63.
    G. Munteanu, “Sur l'accélération d'ordre quelconque dans le mouvement général du corps rigide,” Bull. Inst. Polit. din Jasi,14(18), No. 3-4 (1968).Google Scholar
  64. 64.
    J. Nielsen, Vorlesungen über elementare Mechanik, Berlin (1935).Google Scholar
  65. 65.
    D. Rašković, “Beitrag zum Problem der physikalischen Dentung des Ruckes,” ZAMM, Sonderheft,45, (1965).Google Scholar
  66. 66.
    E. Tokaci, “Contributii la studiul sistemelor materiale percutate,” Bull. Inst. Polit. din Jasi,11(15), No. 3-4 (1965).Google Scholar
  67. 67.
    E. Tokaci, P. Sima, and V. Olaru, “Sur les équations de Mangeron pour les systèmes matériels de masse discontinument variable,” Bull. Inst. Polit. din Jasi,12(16), No. 3-4 (1966).Google Scholar
  68. 68.
    E. Tokacs, P. Sima, A. Orănescu, V. Olariu, G. Munteanu, T. Gafenco, and G. Deliu, “Estensione del dominio di applicazione delle equazioni di Lagrange-Mangeron allo studio dei moti meccanici continui e discontinui,” Bull. Inst. Polit. din Jasi,13(17), No. 1-2 (1967).Google Scholar
  69. 69.
    N. Tsarvenkov, “Une propriété du champs des accélérations réduites d'ordre ‘m’ dans le mouvement plan,” Bull. Inst. Polit. din Jasi,13(17), No. 3-4 (1967).Google Scholar
  70. 70.
    I. Tsenov (Tzénoff), “Sur une transformation des équations du mouvement des systèmes matériels,” Compt. Rend. de l'Acad. Bulg. des Sci.,9, No. 3 (1956).Google Scholar
  71. 71.
    I. Tsenov (Tzénoff), “Nouvelle démonstration du principle d'Ostrogradski-Hamilton pour les systèmes holonomes et non holonomes,” Compt. Rend. de l'Acad. Bulg. des Sci.,15, No. 1 (1962).Google Scholar
  72. 72.
    I. Tsenov (Tzénoff), “Sur le principe d'Hamilton-Ostrogradski,” Compt. Rend. de l'Acad. Bulg. des Sci.,16, No. 3 (1963).Google Scholar
  73. 73.
    I. Tsenov (Tzénoff), “Sur le principe de Lagrange,” Compt. Rend. de l'Acad. Bulg. des Sci.,16, No. 4 (1963).Google Scholar
  74. 74.
    I. Tsenov (Tzénoff), “Sur le principe de la moindre action (principe de Maupertuis),” Compt. Rend. de l'Acad. Bulg. des Sci.,16, No. 5 (1963).Google Scholar
  75. 75.
    I. Tsenov (Tzenov), “Application du principe de d'Alembert-Lagrange à la déduction des équations du mouvement des systèmes matériels holonomes et non holonomes,” Compt. Rend. de l'Acad. Bulg. des Sci.,18, No. 10 (1965).Google Scholar
  76. 76.
    I. Tsenov (Tzenov), “Équations du mouvement d'un système matériel, subordonné a des liaisons non holonomes linéaires et non linéaires concernant les vitesses et les accélérations généralisées,” Compt. Rend. de l'Acad. Bulg. des Sci.,18, No. 8 (1965).Google Scholar
  77. 77.
    I. Tsenov (Tzenov), “Sur des équations de la dynamique lorsque la fonction des forces depend aussi des vitesses généralisées” Compt. Rend. de l'Acad. Bulg. des Sci.,18, No. 6 (1965).Google Scholar
  78. 78.
    I. Tsenov (Tzenov), “Déduction des équations de mouvement des systèmes matériels sans faire appel aux principes de d'Alembert-Lagrange et de Hölder,” Compt. Rend. de l'Acad. Bulg. des Sci.,19, No. 2 (1966).Google Scholar
  79. 79.
    I. Tsenov (Tzenov), “Les équations de Lagrange et de Nielsen à terme supplémentaire s'appliquent aussi à système non holonome,” Compt. Rend. de l'Acad. Bulg. des Sci.,20, No. 5 (1967).Google Scholar

Copyright information

© Plenum Publishing Corporation 1975

Authors and Affiliations

  • B. N. Fradlin
  • L. D. Roshchupkin

There are no affiliations available

Personalised recommendations