Advertisement

Zeitschrift für Vererbungslehre

, Volume 89, Issue 5, pp 675–691 | Cite as

A study of the mechanism of resistance to ultraviolet light in a strain ofNeurospora crassa

  • Fred Goodman
Article

Summary

  1. 1.

    The isolation of a microconidial strain ofNeurospora crassa which is resistant to ultraviolet irradiation has been described.

     
  2. 2.

    The resistance character behaves as though it were recessive in heterokaryons with macroconidial strains.

     
  3. 3.

    Comparison of the survival kinetics of the resistant strain with the parental microconidial strain, a macroconidial strain, and the survival kinetics of heterokaryons, indicate that inactivation of conidia may be attributed to three independent processes. At low doses of irradiation, conidia are inactivated by inactivation of nuclei, or by induction of recessive lethal mutations. At higher doses, cytoplasmic inactivation is added to the process of nuclear inactivation.

     
  4. 4.

    The development of resistance to ultraviolet irradiation inNeurospora may be attributed to an increase in average number of nuclei per conidium and a concomitant increase in cytoplasmic target number. The latter is directly proportional to the volume of the conidium.

     
  5. 5.

    The hypothesis of cytoplasmic inactivation has been applied in the analysis of the kinetics of inactivation of other organisms described in the literature.

     

Keywords

Resistant Strain Ultraviolet Irradiation Ultraviolet Light Concomitant Increase Independent Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Altenberg, E.: The artificial production of mutations by ultraviolet light. Amer. Naturalist68, 491–507 (1934).Google Scholar
  2. Anderson, E. H.: Heat reactivation of ultraviolet inactivated bacteria. J. Bact.61, 389–394 (1951).PubMedGoogle Scholar
  3. Atwood, K. C.: The role of lethal mutation in the killing ofNeurospora conidia by ultraviolet light. Genetics35, 95–96 (1950a).Google Scholar
  4. : The homology patterns of induced lethal mutations inNeurospora crassa. Biol. Bull.99, 332 (1950b).Google Scholar
  5. Atwood, K. C.: Ultraviolet effects onNeurospora heterokaryons. Proc. Internat. Photobiol. Congr. Amsterdam, 1954, p. 143–145.Google Scholar
  6. Atwood, K. C., andF. Mukai: Survival and mutation inNeurospora exposed at nuclear detonations. Amer. Naturalist88, 295–314 (1954).Google Scholar
  7. Atwood, K. C., andA. Norman: On the interpretation of multi-hit survival curves. Proc. nat. Acad. Sci. (Wash.)35, 696–709 (1949).Google Scholar
  8. Atwood, K. C., andT. H. Pittenger: The relations between the X-ray survival curves ofNeurospora microconidia and ascospores. Genetics40, 563–564 (1955).Google Scholar
  9. Berger, H., F. L. Haas, O. Wyss andW. S. Stone: Effects of sodium azide on radiation damage and photoreactivation. J. Bact.65, 538–543 (1953).PubMedGoogle Scholar
  10. Berrie, A. M. M.: Effects of postirradiation temperature treatment on induced mutations inEscherichia coli. Proc. nat. Acad. Sci. (Wash.)39, 1125–1133 (1953).Google Scholar
  11. Borstell, R. C. v., andH. Moser: Differential ultraviolet irradiation of theHabrobracon egg nucleus and cytoplasm. InJ. S. Mitchell (ed.), Progress in Radiobiology, p. 211–215. London: Oliver & Boyd 1956.Google Scholar
  12. Braun, W.: Bacterial Genetics. Philadelphia: W. B. Saunders Company 1953.Google Scholar
  13. Bryson, V.: The effects of nitrogen mustard onEscherichia coli. J. Bact.56, 423–433 (1948).Google Scholar
  14. Caspersson, T.: Über den chemischen Aufbau der Strukturen des Zellkernes. Protoplasma27, 463–467 (1937).Google Scholar
  15. Clifton, C. E.: Introduction to Bacterial Physiology. New York, N. Y.: McGraw Hill Book Co. 1957.Google Scholar
  16. Curran, H. R., andF. R. Evans: The killing of bacterial spores in fluids by agitation with small inert particles. J. Bact.43, 125–140 (1942).Google Scholar
  17. Demerec, M., andR. Latarjet: Mutations in bacteria induced by radiations. Cold Spr. Harb. Symp. quant. Biol.11, 38–49 (1946).Google Scholar
  18. Errera, M., andA. Ficq: The effects of ultraviolet light on the protein and nucleic acid metabolism of the different parts of the starfish oocyte. InJ. S. Mitchell (ed.), Progress in Radiobiology, p. 3–8. London: Oliver & Boyd 1956.Google Scholar
  19. Gafford, R. D.: Lethal effects of gamma radiation onNeurospora conidia. Publication 57-61 of the School of Aviation Medicine, USAF, Randolph AFB, Texas, 1–19, 1957.Google Scholar
  20. Giles, N. H.: Studies on the mechanism of reversion in biochemical mutants ofNeurospora crassa. Cold Spr. Harb. Symp. quant. Biol.16, 283–313 (1951).Google Scholar
  21. Harm, W., u.W. Stein: Vergleich der UV-Inaktivierung und Warmreaktivierung von verschiedenen UV-empfindlichen Coli-Kulturen. Naturwissenschaften39, 212–213 (1952).Google Scholar
  22. Hirschfield, H. J., A. M. Zimmerman, J. V. Landau andD. Marsland: Sensitivity of ultraviolet irradiatedBlepharisma undulans to high pressure lysis. J. cell. comp. Physiol.49, 287–294 (1957).Google Scholar
  23. Huebschman, C.: A method for varying the average number of nuclei in the conidia ofNeurospora crassa. Mycologia (N. Y.)44, 599–604 (1952).Google Scholar
  24. Iverson, R. M., andA. C. Giese: Synthesis of nucleic acid in ultraviolet treatedEscherichia coli. Biochim. biophys. Acta25, 62–68 (1957).PubMedGoogle Scholar
  25. Kaplan, S., E. D. Rosenblum andV. Bryson: Adaptive enzyme formation in radiation-sensitive and radiation-resistantEscherichia coli following exposure to ultraviolet. J. cell. comp. Physiol.41, 153–162 (1953).Google Scholar
  26. Kimball, A. W.: The fitting of multihit survival curves. Biometrics9, 201–211 (1953).Google Scholar
  27. Kimball, R. F.: Non-genetic effects of radiation on microorganisms. Ann. Rev. Microbiol.11, 199–220 (1957).Google Scholar
  28. Latarjet, R., andL. R. Caldas: Restoration induced by catalase in irradiated microorganisms. J. gen. Physiol.35, 455–470 (1952).PubMedGoogle Scholar
  29. Lucke, W. H., andA. Sarachek: X-ray inactivation of polyploidSaccharomyces. Nature (Lond.)171, 1014–1015 (1953).Google Scholar
  30. Luria, S. E.: A growth-delaying effect of ultraviolet radiation on bacterial viruses. Proc. nat. Acad. Sci. (Wash.)30, 393–396 (1944).Google Scholar
  31. Morowitz, H. J.: The action of ultraviolet light and ionizing radiation on spores ofBacillus subtilis. Arch. Biochem.47, 325–337 (1953).PubMedGoogle Scholar
  32. Morse, M. L., andC. E. Carter The synthesis of nucleic acids in cultures ofEscherichia coli strainB andB/r. J. Bact.58, 317–326 (1949).Google Scholar
  33. Newcombe, H. B.: The delayed appearance of radiation-induced genetic change in bacteria. Genetics38, 134–151 (1953).Google Scholar
  34. Newcombe, H. B., andH. A. Whitehead Photoreversal of ultraviolet induced mutagenic and lethal effects inEscherichia coli. J. Bact.61, 243–251 (1951).PubMedGoogle Scholar
  35. Norman, A.: Inactivation ofNeurospora conidia by ultraviolet irradiation. Exp. Cell Res.2, 454–473 (1951).Google Scholar
  36. : Production of phenocopies inAerobacter aerogenes by ultraviolet radiation. J. Bact.65, 151–156 (1953).PubMedGoogle Scholar
  37. : The nuclear role in the ultraviolet inactivation ofNeurospora conidia. J. cell. comp. Physiol.44, 1–10 (1954).Google Scholar
  38. Nybom, N.: Some experiences from mutation experiments inChlamydomonas. Hereditas (Lund)39, 317–323 (1953).Google Scholar
  39. Payne, J. I., P. E. Hartman, S. Mudd andA. W. Phillips: Cytological analysis of ultraviolet irradiatedEscherichia coli. J. Bact.72, 461–472 (1956).PubMedGoogle Scholar
  40. Ravin, A. W., andA. Norman: Studies on non-heritable physiological modification inAerobacter aerogenes. Experientia (Basel)8, 108–110 (1952).Google Scholar
  41. Roberts, R. B., andE. Aldous: Recovery from ultraviolet irradiation inEscherichia coli. J. Bact.57, 363–375 (1949).Google Scholar
  42. Ryan, F. J.: Selected methods ofNeurospora genetics. Meth. med. Res.3, 51–75 (1950).Google Scholar
  43. Sacher, G. A.: Some characteristics of the ultraviolet survival curves ofEscherichia coli B andB/r. Radiat. Res.1, 559 (1954).Google Scholar
  44. Sarachek, A.: Ultraviolet inactivation ofSaccharomyces during the budding cycle. Exp. Cell Res.6, 45–55 (1954a).PubMedGoogle Scholar
  45. : A comparative study of the retardation of budding and cellular inactivation by ultraviolet irradiation in polyploidSaccharomyces with special reference to photoreactivation. Cytologia (Tokyo)19, 77–85 (1954b).Google Scholar
  46. Sarachek, A., andW. H. Lucke: Ultraviolet inactivation of polyploidSaccharomyces. Arch. Biochem.44, 271–279 (1953).PubMedGoogle Scholar
  47. Sarachek, A., andG. F. Townsend: The disruption of mitochondria ofSaccharomyces by ultraviolet irradiation. Science117, 31–33 (1953).PubMedGoogle Scholar
  48. Tobias, C. A.: The dependence of some biological effects of radiation on the rate of energy loss. InJ. J. Nickson (ed.) Symposium on Radiobiology, p. 357–384. New York, N. Y.: John Wiley & Sons 1950.Google Scholar
  49. Wainwright, S. D., andA. Neville: Modification of the biological effects of ultraviolet irradiation by postirradiation treatment with iodoacetate and peptone. J. gen. Microbiol.12, 1–12 (1955).PubMedGoogle Scholar
  50. Witkin, E. M.: Inherited differences in sensitivity to radiation onEscherichia coli. Proc. nat. Acad. Sci. (Wash.)32, 59–68 (1946).Google Scholar
  51. : Genetics of resistance to radiation inEscherichia coli. Genetics32, 221–248 (1947).Google Scholar
  52. : Nuclear segregation and the delayed appearance of induced mutants inEscherichia coli. Cold Spr. Harb. Symp. quant. Biol.16, 357–372 (1951).Google Scholar
  53. Zelle, M. R.: Radiation induced mutations and their implications on the mechanism of radiation effects on bacteria. InA. Kellner et al., Symposium on Radiation effects on cells and tissues. Bact. Rev.19, 22–44 (1955).Google Scholar
  54. Zelle, M. R., andHollaender: Effects of radiation on bacteria. InA. Hollaender (ed.), Radiation Biology, II. New York, N. Y.: McGraw Hill Book Co. 1954.Google Scholar
  55. Zelle, M. R., andJ. E. Ogg: Radiation resistance and genetic segregation in a large cell possibly polyploid strain ofE. coli. J. Bacteriol.74, 485–493 (1957).PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1958

Authors and Affiliations

  • Fred Goodman
    • 1
  1. 1.Zoology Dept.Columbia UniversityNew York 27

Personalised recommendations