Advertisement

Soviet Applied Mechanics

, Volume 5, Issue 2, pp 141–146 | Cite as

The principle of gauss in the mechanics of continuous media

  • N. A. Kil'chevskii
  • S. N. Nikulinskaya
Article
  • 14 Downloads

Keywords

Continuous Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    A. S. Vol'mir, Stability of Elastic Systems [in Russian], Fizmatgiz, Moscow (1963).Google Scholar
  2. 2.
    A. Sommerfeld, The Mechanics of Deformable Bodies [Russian translation], IL, Moscow (1954).Google Scholar
  3. 3.
    N. A. Kil'chevskii, “On the axisymmetric strains and elastic stability of a circular tube subjected to longitudinal compressive forces,” Prikl. Matem. i Mekh.,6, No. 6 (1942).Google Scholar
  4. 4.
    N. A. Kil'chevskii, Elements of Tensor Calculus and Its Applications in Mechanics [in Russian], Gostekhizdat, Moscow (1954).Google Scholar
  5. 5.
    N. A. Kil'chevskii, “Extremal properties of the solution of the problem of contact compression of elastic bodies,” Dokl. Akad. Nauk URSR, No. 1 (1958).Google Scholar
  6. 6.
    N. A. Kil'chevskii and S. N. Nikulinskaya, “On an axisymmetric mode of stability loss of a circular cylindrical shell,” Prikl. Mekh.,1, No. 11 (1965).Google Scholar
  7. 7.
    N. A. Kil'chevskii and N. N. Shepelevskaya, “The principle of least constraint and some of its applications in the filtration theory,” Nauch. Dokl. Vys. Shkoly, Stroitel'stvo, No. 4 (1958).Google Scholar
  8. 8.
    M. I. Reitman, “On a method of solving problems of the dynamics of solids and its application to inelastic shells,” Izv. Akad. Nauk SSSR, OTN, Mekh. i Mashinostr., No. 6 (1964).Google Scholar
  9. 9.
    A. R. Rzhanitsyn, “Extremal properties of a rigid-plastic system loaded beyond the limit of load carrying capacity,” Izv. Akad. Nauk SSSR, OTN, Mekh. i Mashinostr., No. 2 (1959).Google Scholar
  10. 10.
    V. P. Tamuzh, “On a minimum principle in the dynamics of a rigid-plastic body,” Prikl. Matem. i Mekh.,26, No. 4 (1962).Google Scholar
  11. 11.
    A. S. Eddington, The Theory of Relativity [Russian translation], GTTI, Leningrad-Moscow (1934).Google Scholar
  12. 12.
    E. Kroner, Kontinuumstheorie der Versetzungen und Eigenspannungen, Springer-Verlag, Berlin-Gottingen-Heidelberg (1958).Google Scholar

Copyright information

© Consultants Bureau 1972

Authors and Affiliations

  • N. A. Kil'chevskii
  • S. N. Nikulinskaya

There are no affiliations available

Personalised recommendations