Soviet Applied Mechanics

, Volume 24, Issue 12, pp 1179–1183 | Cite as

Stress distribution in flexible cylindrical shells with a circular cut beyond the elastic limit

  • A. L. Kravchuk
  • E. A. Storozhuk
  • I. S. Chernyshenko


Stress Distribution Cylindrical Shell Elastic Limit Flexible Cylindrical Shell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    Kh. K. Dang and A. L. Kozak, “Nonlinear calculation of shell-tube components by the finite-element method,” Sopr. Mater. Teor. Sooruzh., No. 45, 89–92 (1984).Google Scholar
  2. 2.
    A. I. Demidov, “Elastoplastic state of thin shells of arbitrary form with rectangular holes,” Prikl. Mekh.,17, No. 8, 110–113 (1981).Google Scholar
  3. 3.
    L. V. Endizhevskii, Nonlinear Deformation of Ribbed Shells [in Russian], Izd. Krasnoyar. Univ., Krasnoyar (1982).Google Scholar
  4. 4.
    M. V. Zatsepina and Kh. S. Khazanov, “Stress state of cylindrical shell with a circular hole, taking account of geometric nonlinearity,” in: Proceedings of a Scientific—Technical Conference [in Russian], Kuibyshev Aviation Institute (1970), Part 2, pp. 22–23.Google Scholar
  5. 5.
    M. M. Kornishin and M. M. Suleimanova, “Geometrically and physically nonlinear flexure of nonsloping shells of different forms under the combined action of temperature and external forces,” Probl. Prochn., No. 12, 80–83 (1983).Google Scholar
  6. 6.
    A. M. Kuz'menko and V. I. Shatalov, “Stress concentration around holes in sloping shells with geometric nonlinearity,” Samoletostr. Tekh. Vozdushn. Flota, No. 20, 76–79 (1970).Google Scholar
  7. 7.
    N. P. Petukhov, “Flexible plates and hollow shells consisting of rectangles in plan view” Issled. Teor. Obol., No. 7, 11–15 (1976).Google Scholar
  8. 8.
    E. A. Storozhuk and I. S. Chernyshenko, “Elastoplastic nonaxisymmetric, deformation of shells with a curvilinear hole,” Prikl. Mekh.,22, No. 7, 59–65 (1986).Google Scholar
  9. 9.
    A. N. Guz', I. S. Chernyshenko, V. N. Chekhov, et al., Methods of Shell Calculation, Vol. 1, Theory of Thin Shells Weakened by Holes [in Russian], Naukova. Dumka, Kiev (1980).Google Scholar
  10. 10.
    A. G. Ugodchikov and Yu. G. Korotkikh, Some Methods of Computer Solution of Physically Nonlinear Problems of Plate and Shell Theory [in Russian], Naukova Dumka, Kiev (1971).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • A. L. Kravchuk
  • E. A. Storozhuk
  • I. S. Chernyshenko

There are no affiliations available

Personalised recommendations