Journal of Neurology

, Volume 242, Issue 2, pp 99–104 | Cite as

Myotonic dystrophy: Correlation of clinical symptoms with the size of the CTG trinucleotide repeat

  • Andrea Jaspert
  • Raimund Fahsold
  • Holger Grehl
  • Detlef Claus
Original Communication


An unstable DNA sequence of a gene encoding a protein kinase has been identified as the molecular basis of myotonic dystrophy. The correlation between different symptoms of myotonic dystrophy and the size of this unstable base triplet (CTG)n repeat was investigated in 14 patients. DNA was prepared from whole blood by standard procedures. Detailed clinical, psychological, electrophysiological (quantified measurement of myotonia, electrocardiography) and other laboratory examinations (muscle biopsy in 4 patients, slit lamp examination) were performed. Triplet size correlated significantly with muscular disability and inversely with age at onset of the disease. A greater frequency of mental and gonadal dysfunction could be observed in patients with a larger repeat size. Other symptoms, however, such as cataract, myotonia, gastrointestinal dysfunction and cardiac abnormalities were not correlated with repeat size. Somatic mosaicism with different amplification rates in various tissues might be one possible explanation for the variable phenotypes. Furthermore, other factors such as different expression of the myotonic dystrophy gene might contribute to the clinical variability of the disease at a given triplet size.

Key words

Myotonic dystrophy Amplification CTG repeat Protein kinase Somatic mosaicism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anvret M, Ahlberg G, Grandell U, Hedberg B, Johnson K, Edstrom L (1993) Larger expansions of the CTG repeat in muscle compared to lymphocytes from patients with myotonic dystrophy. Hum Molec Genet 2: 1397–1400PubMedGoogle Scholar
  2. 2.
    Ashizawa T, Dubel JR, Harati Y (1993) Somatic instability of CTG repeat in myotonic dystrophy. Neurology 43: 2674–2678PubMedGoogle Scholar
  3. 3.
    Buxton J, Shelbourne P, Davies J, Jones C, Van Tongeren T, Aslanidis C, Jong P de, Jansen G, Anvret M, Riley B, Williamson R, Johnson K (1992) Detection of an unstable fragment of DNA specific to individuals with myotonic dystrophy. Nature 355: 547–548PubMedGoogle Scholar
  4. 4.
    Caughey JE, Myrianthopoulos NC (1963) Dystrophia myotonica and related disorders. Thomas, Springfield, Ill.Google Scholar
  5. 5.
    Censori B, Danni M, Del Pesce M, Provinciali L (1990) Neuropsychological profile in myotonic dystrophy. J Neurol 237: 251–256PubMedGoogle Scholar
  6. 6.
    Dyken PR, Harper PS (1973) Congenital dystrophia myotonica. Neurology 23: 465–473PubMedGoogle Scholar
  7. 7.
    Eckardt VF, Nix W (1991) The anal sphincter in patients with myotonic muscular dystrophy. Gastroenterology 100: 424–430PubMedGoogle Scholar
  8. 8.
    Folstein MF, Folstein SE, McHugh PR (1975) Mini-Mental-State: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12: 189–198PubMedGoogle Scholar
  9. 9.
    Fu Y-H, Friedman DL, Richards S, Pearlman JA, Gibbs RA, Pizzuti A, Ashizawa T, Perryman MB, Scarlato G, Fenwick RG, Caskey CT (1993) Decreased expression of myotonin-protein kinase messenger RNA and protein in adult form of myotonic dystrophy. Science 260: 235–238PubMedGoogle Scholar
  10. 10.
    Griggs RC, Wood DS, and the Working Group on the Molecular Defect in Myotonic Dystrophy (1989) Criteria for establishing the validity of genetic recombination in myotonic dystrophy. Neurology 39: 420–421PubMedGoogle Scholar
  11. 11.
    Harley HG, Brook JD, Rundle SA, Crow S, Reardon W, Buckler AJ, Harper PS, Housman DE, Shaw DJ (1992) Expansion of an unstable DNA region and phenotypic variation in myotonic dystrophy. Nature 355: 545–546PubMedGoogle Scholar
  12. 12.
    Harley HG, Rundle SA, Reardon W, Myring J, Crow S, Brook JD, Harper PS (1992) Unstable DNA sequence in myotonic dystrophy. Lancet 339: 1125–1128PubMedGoogle Scholar
  13. 13.
    Harley HG, Rundle SA, MacMillan JC, Myring J, Brook JD, Crow S, Reardon W, Fenton I, Shaw DJ, Harper PS (1993) Size of the unstable CTG repeat sequence in relation to phenotype and parental transmission in myotonic dystrophy. Am J Hum Genet 52: 1164–1174PubMedGoogle Scholar
  14. 14.
    Harper PS (1989) Myotonic dystrophy. Saunders, LondonGoogle Scholar
  15. 15.
    Hawley RJ, Milner MR, Gottdiener J, Cohen A (1991) Myotonic heart disease: a clinical follow up. Neurology 41: 259–262PubMedGoogle Scholar
  16. 16.
    Hofmann-Radvanyi H, Lavedan C, Rabes JP, Savoy D, Duros C, Johnson K, Junien C (1993) Myotonic dystrophy — absence of CTG enlarged transcript in congenital forms, and low expression of the normal allele. Hum Molec Genet 2: 1263–1266PubMedGoogle Scholar
  17. 17.
    Hunter A, Tsilfidis C, Mettler G, Jacob P, Mahadevan M, Surh L, Korneluk R (1992) The correlation of age of onset with CTG trinucleotide repeat amplification in myotonic dystrophy. J Med Genet 29: 774–779PubMedGoogle Scholar
  18. 18.
    Jennekens FGI, Kate LP ten, Visser M de, Wintzen AR (1991) Diagnostic criteria for Duchenne and Becker muscular dystrophy and myotonic dystrophy. Neuromusc Disord 1: 389–391PubMedGoogle Scholar
  19. 19.
    Lavedan C, Hofmann-Radvanyi H, Shelbourne P, Rabes J-P, Duros C, Savoy D, Dehaupas I, Luce S, Johnson K, Junien C (1993) Myotonic dystrophy: size- and sex-dependent dynamics of CTG meiotic instability, and somatic mosaicism. Am J Hum Genet 52: 875–883Google Scholar
  20. 20.
    Lehrl S, Daun H, Schmidt R (1971) Eine Abwandlung des HAWIEWortschatztests als Kurztest zur Messung der Intelligenz Erwachsener. Arch Psychiatr Nervenkr 214: 353–364PubMedGoogle Scholar
  21. 21.
    Mathieu J, De Braekeleer M, Provost C, Boily C (1992) Myotonic dystrophy: clinical assessment of muscular disability in an isolated population with presumed homogeneous mutation. Neurology 42: 203–208PubMedGoogle Scholar
  22. 22.
    Olofsson B-O, Forsberg H, Andersson S, Bjerle P, Henrikson A, Wedin I (1988) Electrographic findings in myotonic dystrophy. Br Heart J 59: 47–52PubMedGoogle Scholar
  23. 23.
    Penrose LS (1948) The problem of anticipation in pedigrees of dystrophia myotonica. Ann Eugen (Lond) 14: 125–232Google Scholar
  24. 24.
    Perini GI, Colombo G, Armani M, Pellegrini A, Ermani M, Miotti M, Angelini C (1989) Intellectual impairment and cognitive evoked potentials in myotonic dystrophy. J Nerv Ment Dis 177: 750–754PubMedGoogle Scholar
  25. 25.
    Podczeck A, Graf M, Hief C, Kaltenbrunner W, Nurnberg M, Steinbach K (1993) Electrocardiographic and electrophysiologic findings in patients with myotonic dystrophy. Z Kardiol 82: 474–476PubMedGoogle Scholar
  26. 26.
    Ptacek LJ, Johnson KJ, Griggs RC (1993) Genetics and physiology of the myotonic muscle disorders. N Engl J Med 328: 482–489PubMedGoogle Scholar
  27. 27.
    Raven JC (1941) Standardisation of progressive matrices. Br J Med Psychol 19: 137–150Google Scholar
  28. 28.
    Ricker K, Lehmann-Horn F, Moxley RT (1990) Myotonia fluctuans. Arch Neurol 47: 268–272PubMedGoogle Scholar
  29. 29.
    Sabouri LA, Mahadevan MS, Narang M, Lee DSC, Surh LC, Korneluk RG (1993) Effect of the myotonic dystrophy (DM) mutation on mRNA levels of the DM gene. Nature Genetics 4: 233–238PubMedGoogle Scholar
  30. 30.
    30.Thornton CA, Johnson K, Moxley RT (1994) Myotonic dystrophy patients have larger CTG expansions in skeletal muscle than in leukocytes. Ann Neurol 35: 104–107PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Andrea Jaspert
    • 1
  • Raimund Fahsold
    • 2
  • Holger Grehl
    • 1
  • Detlef Claus
    • 1
  1. 1.Department of NeurologyUniversity of Erlangen-NürnbergErlangenGermany
  2. 2.Institute of Human GeneticsUniversity of Erlangen-NürnbergErlangenGermany

Personalised recommendations