Soviet Applied Mechanics

, Volume 21, Issue 6, pp 547–553 | Cite as

Axisymmetric stress state of a medium with an elastic noncanonical inclusion

  • Yu. N. Nemish
  • I. S. Sagalyuk
  • D. I. Chernopiskii
Article
  • 12 Downloads

Keywords

Stress State Axisymmetric Stress Axisymmetric Stress State 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. 1.
    A. Ya. Aleksandrov and V. S. Vol'pert, “Solution of three-dimensional problems of elasticity theory for a transversally isotropic solid of revolution using analytic functions,” Inzh. Zh., Mekh. Tverd. Tela, No. 5, 84–92 (1967).Google Scholar
  2. 2.
    A. Ya. Aleksandrov and Yu. I. Solov'ev, Three-Dimensional Problems of Elasticity Theory [in Russian], Nauka, Moscow (1978).Google Scholar
  3. 3.
    A. N. Guz' and Yu. N. Nemish, Perturbation Methods in Three-Dimensional Problems of Elasticity Theory [in Russian], Vishcha Shkola, Kiev (1982).Google Scholar
  4. 4.
    A. N. Guz' and Yu. N. Nemish, Three-Dimensional Problems of Elasticity and Plasticity Theory, Vol. 2, Statics of Elastic Bodies of Noncanonical Form [in Russian], Naukova Dumka, Kiev (1984).Google Scholar
  5. 5.
    A. I. Lur'e, Three-Dimensional Problems of Elasticity Theory [in Russian], Gostekhizdat, Moscow (1955).Google Scholar
  6. 6.
    Yu. N. Nemish, “Three-dimensional problems of elasticity theory for multilayer shells with near-spherical boundary surfaces,” Prikl. Mekh.,17, No. 7, 23–29 (1981).Google Scholar
  7. 7.
    Yu. N. Nemish and D. I. Chernopiskii, Elastic Equilibrium of Corrugated Bodies [in Russian], Naukova Dumka, Kiev (1983).Google Scholar
  8. 8.
    Yu. N. Podil'chuk, Three-Dimensional Problems of Elasticity Theory [in Russian], Naukova Dumka, Kiev (1979).Google Scholar
  9. 9.
    Yu. N. Podil'chuk, Three-Dimensional Problems of Elasticity and Plasticity Theory, Vol. 1, Boundary Problems of the Statics of Elastic Bodies [in Russian], Naukova Dumka, Kiev (1984).Google Scholar
  10. 10.
    V. T. Chen, “Axisymmetric stress field around spheroidal inclusions and cavities in a transversally isotropic material,” Trans. ASME, Appl. Mech.,35, No. 4, 160–164 (1968).Google Scholar
  11. 11.
    G. S. Shapiro, “Axisymmetric deformation of an ellipsoid of revolution,” Dokl. Akad. Nauk SSSR,58, No. 7, 1309–1312 (1947).Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • Yu. N. Nemish
  • I. S. Sagalyuk
  • D. I. Chernopiskii

There are no affiliations available

Personalised recommendations